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INTRODUCTION

High precision phenomenology @ the LHC typically requires the calculation of
two-loop Feynman integrals
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In the last 15 years we have witnessed impressive advancements in our ability

of computing these integrals



INTRODUCTION

In the last 15 years we have witnessed impressive advancements in our ability
of computing these integrals.

Rule of thumb: Masses and scales in general are difficult.

We have good control on:

2 — 1 2 — 2

Mainly massless
internal particles. Up
to 2 massive external
particles (HH, WZ,...)

Different internal and
external particles



HOW DID WE GET THERE

» Development of the differential equation method
[Kotikov ’90; Remiddi ’97; Gehrmann Remiddi ’00]

> Definition of the Harmonic Polylogarithms (HPLs) and discovery of their
large applicability in high energy physics [Remiddi, Vermaseren ‘99]

> Generalization to Multiple Polylogarithms (MPLs), well known to the

mathematicians [Kummer 1840; Lappo-Danilevsky 1954; Gehrmann, Remiddi ’01]

» Development of routines for their numerical evaluation [Vollinga, Weinzierl *04]

» Study of their analytical and algebraic properties (Symbols and Co-action for
MPLs and Feynman integrals) [Goncharov ’01,..., Duhr, Gangl, Rhodes ’13,...]

» Finally, discovery of Canonical Bases. Close the circle with the difterential
equations method. FIs that fulfil DEs in canonical basis can be

straightforwardly solved in terms of MPLs... well not quite, but often...
[Henn ’13]




WHAT CAN WE DO

While most of these developments appear formal and even purely
mathematical, LHC phenomenology had a lot to gain from them!
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WHERE DO WE STAND NOW

There is a lot that we can (could?) do, but we are not quite there yet...

Properly modelling LHC processes with high precision requires more external

particles and massive internal states

Y

What are we fighting against?

Algebraic complexity Analytical complexity

New mathematical insight needed to
tame these processes!



THE SIMPLICITY OF MPLS: iTecRATING N THE RIEMANN SPHERE

Most of these processes expressible in terms of MPLs
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THE SIMPLICITY OF MPLS: iNtecraTING oN THE RIEMANN SPHERE

Most of these processes expressible in terms of MPLs

Toodt
G(cl,02,...,cn,x):/ ! G(cgy .oy Cpyty)
0




THE SIMPLICITY OF MPLS: iNtecraTING oN THE RIEMANN SPHERE

G(C2y .y Cpyty)

/tn-l dt,,
-/ -

The singularities are

T generically complex

numbers!

Riemann sphere ~ complex plane
through stereographic projection

Rational functions have no non-trivial branch-cut structure, only poles in the complex plane




THE ELLIPTIC WORLD: 1e surise anp His FrIENDS

At two loops, MPLs with there beautiful properties are not enough.

Electron self-energy in QED @ 2 loops  (computation attempted in 1961 by A. Sabry!)
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THE ELLIPTIC WORLD: 11e sunrise anp wis FrIENDS

At two loops, MPLs with there beautiful properties are not enough.

— (computation attempted in 1961 by A. Sabry!)
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Elliptic Integral of the first kind: -




A NEW GEOMETRY

_ These integrals “live” in a new geometry:

Consider the function

y(2) = VI = 22— 22) with k2= i > 1
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_ These integrals “live” in a new geometry:

Consider the function

y(2) = VI = 22— 22) with k2= i > 1

This algebraic equation defines geometrically an elliptic curve

here y becomes imaginary



A NEW GEOMETRY

In contrast to the rational functions, this defines (on the complex plane) a multi-valued
function due to the branches of the square-root



A NEW GEOMETRY

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

In contrast to the rational functions, this defines (on the complex plane) a multi-valued
function due to the branches of the square-root

The usual trick is: restrict the function to be valid on its own graph -> “Riemann Surface”

T={(zy) eCly’ = (1-2°)(z" — k°)}

The 4 points|z={-1,+1,-k,+k}, are branching points for y(z) (the argument changes sign).
In order to get a continuous branch, we need to cut the complex plane!




A NEW GEOMETRY
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But one copy of the complex plane is not enough. For every z, except the branching
points, there are two choices for y (two signs of the square root!).

Plus two signs on each side of the branches!
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To obtain a continuous determination of y, I need to glue together the two planes.

Flip one plane along x axis, and glue + with +, and - with -
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To obtain a continuous determination of y, I need to glue together the two planes.

Flip one plane along x axis, and glue + with +, and - with -
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[Drawings by C. Teleman, Riemann Surfaces]



A NEW GEOMETRY

To obtain a continuous determination of y, I need to glue together the two planes.

Flip one plane along x axis, and glue + with +, and - with -

point at oo

[Drawings by C. Teleman, Riemann Surfaces]



A NEW GEOMETRY

In conclusion, the Riemann surface associated to the algebraic equation that
defines an elliptic curve is a complex Torus!

So what we want is to obtain MPLs on
the Torus! Iterated integrals over
“rational functions” defined on the Torus




A NEW GEOMETRY

In conclusion, the Riemann surface associated to the algebraic equation that
defines an elliptic curve is a complex Torus!

So what we want is to obtain MPLs on
the Torus! Iterated integrals over
“rational functions” defined on the Torus

Easy to see why the same
structures appear in one-loop
string theory amplitudes!



ELLIPTIC MULTIPLE POLYLOGARITHMS

Some definitions. Take a completely general elliptic curve:

y® = (x — a1)(x — a)(x — as)(x — as)

We define the two periods as

as a2
w1:2c4 %ZQK()\), CU222C4 %ZQIK(].—)\)
an y a1 y

(a1 — as)(a2 — a3) C—l ol
A= (31 — 33)(32 — 34) ’ 4= 2\/( 1 3)( )
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ELLIPTIC MULTIPLE POLYLOGARITHMS

Dual description of the same problem

Elliptic curve as algebraic equation Genus one complex surface - Torus

y? = (x — a1)(x — a2)(x — a3)(x — as)

\ /‘ \\ i o 4 / :;
} ! K\ k
s / S \\\
~ e A A L ~ = ‘
. , C4 Todt
Move between the two using Abel’s Map 2y = — -
wl ai y(t)



ELLIPTIC MULTIPLE POLYLOGARITHMS
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[terated integrals on the Torus have been defined and studied by mathematicians
[Brown, Levin ’11]

The elliptic curve representation is easier to relate directly to Feynman diagrams!
So can construct elliptic polylogarithms on the elliptic curve?

What are rational functions on the elliptic curve?

A rational function on the elliptic curve is a function R(x, y) subject to the

constraint y = /P(x)

pi(x) + p2(x)y _ pi(x) + p2(x) VP(x) _
a1(x) + @2(x)y  qi(x) + g2(x) /P(x)

R(x,y) = R1(x) + Ra(x)

1
v P(x)




ELLIPTIC MULTIPLE POLYLOGARITHMS

So we need to study iterated integrals of this form

1
/dx (Rl(x)—l— ng(X)) = 7



ELLIPTIC MULTIPLE POLYLOGARITHMS
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So we need to study iterated integrals of this form

1
/dx (Rl(x) + ml&b()()) =

Integrals of the kind: dx
/ (x — ¢j)k

from Rjp(x)

d 1
/ ~ xk / = from — Ro(x)
y(x — C,) y

Partial fractioning reduces everything to

/ /dx a:dx /dex / dx
r—c’ y y(z —¢)




ELLIPTIC MULTIPLE POLYLOGARITHMS
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Still something is not optimal. MPLs defined as iterated integrals over kernels with
simple poles —> logarithmic singularities in scattering amplitudes!

/ /da: xdrz: /:Bde / dx
r—c’ y y(z —c)

This guy here has a
double pole at infinity!!
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Still something is not optimal. MPLs defined as iterated integrals over kernels with
simple poles —> logarithmic singularities in scattering amplitudes!

/ /da: xdaj /:Bde / dx
r—c’ ’ y y(z —c)

This guy here has a
double pole at infinity!!

Only way to get a full set of
kernels with simple poles is to T x?dx
ple p Zu(x) ~ /

introduce a transcendental
kernel! Choose its primitive.



ELLIPTIC MULTIPLE POLYLOGARITHMS

Fundamental differences with MPLs:

- Impossible to find basis of kernels which are algebraic and only with
simple poles.

- We need infinite tower of integration kernels to span the whole space!
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Fundamental differences with MPLs:

- Impossible to find basis of kernels which are algebraic and only with
simple poles.

- We need infinite tower of integration kernels to span the whole space!

¢0(0ax) — ﬂ?
y
vilex) = —— . pa(ex)= -
X —cC y(x —¢c)
P1(00,x) = = Zu(x),  _1(00,x) = —,
y y
bon(oo,x) = X Z D (x) = 02
Yy C4
n(e,x) = —— Z D (x) = 6,0 Da(x)
X —C
Yn(00,x) = 2 Z0(x),  pn(e,x) = —2L— 7" D (x)
y y(x —c)

X
Ea(d 0 & x) =/ dt Pn, (c1, t) Ea( 5 10 &5 t)
0



ELLIPTIC MULTIPLE POLYLOGARITHMS

Fundamental differences with MPLs:

- Impossible to find basis of kernels which are algebraic and only with
simple poles.

- We need infinite tower of integration kernels to span the whole space!

TPO(O,X) — ﬂ)
Yy

¢1(C>X) — L 3 ¢—1(C7X) — Y 3
X —cC y(x —¢c)

1 (00, x) = %zux), p_1(c0,x) = =,

X
Ea(d 0 & x) =/ dt Pn, (c1, t) Ea( 5 10 &5 t)
0



ARE THEY REALLY USEFUL?
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In the equal-mass case, particularly compact expression

1 _1
2 : —1, —1.
5111(577” ) 0 — ( 2+S)c4 e E4(8871)—2E4(8 00171) _E4(8 0171)

—E4(g7'31) —Ea(§ 551 | -

Different mass case can also be expressed in terms of the same functions



ARE THEY REALLY USEFUL?

A first generalisation: the Kite integral

Ki(p®, m”) = b=

1
— = [271'2G(O, z) — 2m°G(1,2) +3G(0,0,0,2) — 6G(0,1,0,z) — 24¢(3)
Z

+126G(0,1,1,7) — 3G(1,0,0,z) — 6G(1,0,1,2) + 6G(1,1,0,z) + ...]
1+ z
E 001;1 E 010;1 _ E 100;1
+(c‘r’1—a3)2(1—z)z[4(001 ) +Ei(010:1) — Ea(go0: 1))

14+ z 0 _
+ (31 — 33)(1 — Z)Z [E4(O 0




ARE THEY REALLY USEFUL?
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A three point function

m
P1 p2

1
r_y = 5(1—\/1:&4@), rop=1—1r_4.

P2

Relevant for ttb, gg, 2jet, HH, Hj production

N




ARE THEY REALLY USEFUL?
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ARE THEY REALLY USEFUL?

Soon more examples to come, in particular also four point functions!

The properties of these functions are currently under study, many recent
developments:

» Study of the algebra generated by this function following [Brown ’14]

» We developed a set of tools which works very well for direct integration
of FIs (like before 1999 for MPLs and Fls...) [Gehrmann, Remiddi ’00]

» Connection to the differential equation method is non-trivial.
Understood for the special case of Iterated integrals over modular forms

» Today “concept of purity”. Rotation in the basis of E4 functions to
obtain a class of functions of “pure transcendental weight”



CONCLUSIONS

» We have built a class of functions which span the space generated by repeated
integrations of rational functions on an elliptic curve

» The functions span the same space of the eMPLs defined by mathematicians and
string theorists on the Torus. We have highlighted the connection between the
two formalisms

» We have showed how many physically relevant FIs can be expressed in terms of
these functions

» We can associate to them a concept of transcendental weight and we recover an
idea of “purity” associated to some classes of FIs

Still to do:

» Understand the connection with the differential equations method
» Study general algorithm for their numerical evaluation

» Finally, use them to do some real physics!

Stay tuned!



THANK YOU!
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PURE ELLIPTIC MULTIPLE POLYLOGARITHMS
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A PURE VERSION OF THE SUNRISE GRAPH
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A PURE VERSION OF THE TRIANGLE
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