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Motivation

• Precision physics for heavy particles (e.g. Higgs, top, W /Z-bosons).

• If we allow masses, already two-loop two-point functions go beyond multiple

polylogarithms.

• We want to learn what comes beyond multiple polylogarithms!

• Now an active field of research

Laporta, Remiddi, Müller-Stach, Zayadeh, Adams, Bogner, Bloch, Kerr, Vanhove, Søgaard, Zhang, von Manteuffel,

Tancredi, Primo, Bonciani, Del Duca, Frellesvig, Henn, Hidding, Moriello, V. Smirnov, A. Smirnov, Lee, Schweitzer,

Chaubey, Broedel, Duhr, Dulat, Penante, Ablinger, Blümlein, De Freitas, van Hoeij, Imamoglu, Raab, Schneider,

Bourjaily, McLeod, Spradlin, von Hippel, Wilhelm, S.W.



Differential equations

Let xk be a kinematic variable. Let Ii ∈ {I1, ..., INmaster} be a master integral. Carrying

out the derivative

∂

∂xk

Ii

under the integral sign and using integration-by-parts identities allows us to express

the derivative as a linear combination of the master integrals.

∂

∂xk

Ii =
Nmaster

∑
j=1

ai jI j

(Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99)



Differential equations

Let us formalise this:

~I = (I1, ..., INmaster) , set of master integrals,

~x = (x1, ...,xNB
) , set of kinematic variables the master integrals depend on.

We obtain a system of differential equations of Fuchsian type

d~I +A~I = 0,

where A is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi.

The matrix-valued one-form A satisfies the integrability condition

dA+A∧A = 0

Computation of Feynman integrals reduced to solving differential equations!



Iterated integrals

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path, write for

the pull-back of ω j to the interval [0,1]

f j (λ)dλ = γ∗ω j.

The iterated integral is defined by (Chen ’77)

Iγ (ω1, ...,ωk;λ) =

λ∫

0

dλ1 f1 (λ1)

λ1∫

0

dλ2 f2 (λ2) ...

λk−1∫

0

dλk fk (λk) .

Example 1: Multiple polylogarithms (Goncharov ’98)

ω j =
dλ

λ− z j

.

Example 2: Iterated integrals of modular forms (Brown ’14): f j(τ) a modular form,

ω j = 2πi f j (τ) dτ.



The ε-form of the differential equation

If we change the basis of the master integrals ~J =U~I, the differential equation becomes

(d +A′)~J = 0, A′ =UAU−1 +UdU−1

Suppose one finds a transformation matrix U , such that

A′ = ε∑
j

C j d ln p j(~x),

where

- ε appears only as prefactor,

- C j are matrices with constant entries,

- p j(~x) are polynomials in the external variables,

then the system of differential equations is easily solved in terms of multiple

polylogarithms.

Henn ’13



Transformation to the ε-form

We may

• change the basis of the master integrals

~I → U~I,

where U is rational in the kinematic variables.

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee ’14; Meyer ’16, ’17; Prausa ’17; Gituliar,

Magerya ’17; Lee, Pomeransky ’17;

• perform a rational / algebraic transformation on the kinematic variables

(x1, ...,xNB
) → (x′1, ...,x

′
NB
),

often done to absorb square roots.

Becchetti, Bonciani ’17, Bourjaily, McLeod, von Hippel, Wilhelm, ’18, Besier, van Straten, S.W., ’18



Part I

Rationalising roots

Besier, van Straten, S.W., ’18



Example

The one-loop massive bubble in pre-canonical form:

d

dx
~I =

(

0 0
ε

4x
− ε

4(x−4) − 1

2x
− 1+2ε

2(x−4)

)

~I

Change the basis of master integrals ~J =U~I to obtain an ε-form:

d

dx
~J = ε

(

0 0

− 1√
−x(4−x)

− 1

x−4

)

~J

Change the kinematic variable x =−(1−y)2

y
to rationalise the square root:

(Fleischer, Kotikov, Veretin, ’98)

d

dy
~J = ε

(

0 0

−1

y
1

y
− 2

y+1

)

~J

Is there a systematic way to find a transformation which rationalises the square root?



The algorithm

Preparation: Associate to a square root a hypersurface:

v =
√

−x(4− x) ⇒ v2+ x(4− x) = 0

Definition: A point p of a hypersurface f (x1, ....,xNB+1) = 0 is said to be of multiplicity

r, if there is at least one non-vanishing r-th partial derivative of f at p and, at the same

time, all partial derivatives of lower order vanish at p.

Theorem: Let d = deg f . If the hypersurface has a point of multiplicity (d−1), we may

algorithmically rationalise the square root.

Works for any number of variables NB, works for any degree d. Works also iteratively,

as long as there is always a point of multiplicity (d −1).



Example

Hexagon functions:

∆
{123456}
6

=

√

(1−u1−u2−u3)
2−4u1u2u3

Associated hypersurface:

f (u,u1,u2,u3) = (1−u1−u2−u3)
2−4u1u2u3−u2

Points of multiplicity 2:

{(0,0,0,1),(0,0,1,0),(0,1,0,0),(0,1,1,1)}

Pick the first one. One obtains

u1 =
(t1+ t2 + t3)

2−4t1t2 −1

4t2t3
, u2 =

(t1 + t2+ t3)
2−4t1t2 −1

4t1t3
, u3 =

(t1 + t2+ t3)
2 −1

4t1t2



Part II

Feynman integrals depending on a single scale and
associated to a single elliptic curve

(Iterated integrals of modular forms)



Modular forms

Denote by H the complex upper half plane. A meromorphic function f : H → C is a

modular form of modular weight k for SL2(Z) if

(i) f transforms under Möbius transformations as

f

(

aτ+b

cτ+d

)

= (cτ+d)k · f (τ) for

(

a b

c d

)

∈ SL2(Z)

(ii) f is holomorphic on H,

(iii) f is holomorphic at ∞.



Congruence subgroups

Apart from SL2(2,Z) we may also look at congruence subgroups, for example

Γ0(N) =

{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

Γ1(N) =

{(

a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}

Γ(N) =

{(

a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}

Modular forms for congruence subgroups: Require “nice” transformation properties

only for subgroup Γ (plus holomorphicity on H and at the cusps).



Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!

p2 p2

p2

m2

p2

m2



The Picard-Fuchs operator

Let I be one of the master integrals {I1, ..., INmaster}. Choose a path γ : [0,1]→ M and

study the integral I as a function of the path parameter λ.

Instead of a system of Nmaster first-order differential equations

(d +A)~I = 0,

we may equivalently study a single differential equation of order Nmaster

Nmaster

∑
j=0

p j (λ)
d j

dλ j
I = 0.

We may work modulo sub-topologies and ε-corrections:

L =
r

∑
j=0

p j (λ)
d j

dλ j
: L I = 0 mod (sub-topologies, ε-corrections)



Factorisation of the Picard-Fuchs operator

• Feynman integral evaluates to multiple polylogarithms

⇒ Picard-Fuchs operator factorises into linear factors.

• Picard-Fuchs operator does not factorise into linear factors

⇒ Feynman integral does not evaluate to multiple polylogarithms.

The next more complicate case:

The differential operator contains one irreducible second-order differential operator

a j(λ)
d2

dλ2
+b j(λ)

d

dλ
+ c j(λ)



An example from physics: The two-loop sunrise integral

Sν1ν2ν3
(D,x) =

1

2

3

Picard-Fuchs operator for S111(2,x):

L = x(x−1) (x−9)
d2

dx2
+
(

3x2−20x+9
) d

dx
+(x−3)

(Broadhurst, Fleischer, Tarasov ’93)

Irreducible second-order differential operator.

Picard-Fuchs operator for the periods of a family of elliptic curves.



The elliptic curve

How to get the elliptic curve?

• From the Feynman graph polynomial:

−x1x2x3x+(x1 + x2+ x3)(x1x2+ x2x3 + x3x1) = 0

• From the maximal cut:

v2− (u− x)(u− x+4)
(

u2+2u+1−4x
)

= 0

Baikov ’96; Lee ’10; Kosower, Larsen, ’11; Caron-Huot, Larsen, ’12; Frellesvig, Papadopoulos, ’17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, ’17

The periods ψ1, ψ2 of the elliptic curve are solutions of the homogeneous differential

equation.

Adams, Bogner, S.W., ’13; Primo, Tancredi, ’16

Set τ =
ψ2

ψ1

, q = e2iπτ.



Bases of lattices

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as (ψ2,ψ1).
Convention: Normalise (ψ2,ψ1)→ (τ,1) where τ = ψ2/ψ1.

1

τ τ′

Change of basis:

(

ψ′
2

ψ′
1

)

=

(

a b

c d

)(

ψ2

ψ1

)

,

Transformation should be invertible:

(

a b

c d

)

∈ SL(2,Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d



The ε-form of the differential equation for the sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or

a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression ψ1/π from the master integrals
in the sunrise sector one obtains an ε-form:

I1 = 4ε2S110 (2−2ε,x) , I2 =−ε2 π

ψ1

S111 (2−2ε,x) , I3 =
1

ε

1

2πi

d

dτ
I2 +

1

24

(

3x2 −10x−9
)ψ2

1

π2
I2.

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

d

dτ
~I = ε A(τ)~I,

where A(τ) is an ε-independent 3×3-matrix whose entries are modular forms.



The ε-form of the differential equation for the sunrise

The matrix A(τ) is given by

A(τ) =





0 0 0

0 − f2(τ) 1
1

4
f3(τ) f4(τ) − f2(τ)



 ,

where f2, f3 and f4 are modular forms of Γ1(6) of modular weight 2, 3 and 4,

respectively.

I1, I2 and I3 are expressed as iterated integrals of modular forms to all orders in ε.

Adams, S.W., ’17, ’18



Numerical evaluations

Complete elliptic integrals efficiently computed from arithmetic-geometric mean.

q-series converges for all t ∈ R\{m2,9m2,∞}.

t/m2 ∈ [9,∞[
t/m2 ∈ [1 : 9]
t/m2 ∈ [0 : 1]

t/m2 ∈]−∞,0]

path in q

Re(q)

Im
(q
)

10.50−0.5−1

1

0.5

0

−0.5

−1

SecDec
our result

sunrise, real part

t/m
2

R
e(

I 1
0

1
0

1
)

151050−5

10

8

6

4

2

0

SecDec
our result

sunrise, imaginary part

t/m
2

Im
(I

1
0

1
0

1
)

151050−5

10

8

6

4

2

0

Bogner, Schweitzer, S.W., ’17



Feynman integrals evaluating to iterated integrals of modular

forms

This applies to a wider class of Feynman integrals:

p2 p2

p2

m2

p2

m2



Part III

Feynman integrals depending on multiple scales and
associated to a single elliptic curve

(see Lorenzo’s talk)



Part IV

Feynman integrals depending on multiple scales and
associated to several elliptic curves

(An example from top-pair production)



Kinematics

Iν1ν2ν3ν4ν5ν6ν7

(

D,
s

m2
,

t

m2

)

=
(

m2
)

7

∑
j=1

ν j−D
∫

dDk1

(2π)D

dDk2

(2π)D

7

∏
j=1

1

P
ν j

j

,

p1

p2 p3

p4

1

2

3

4

5

6

7

p2
1 = p2

2 = 0, p2
3 = p2

4 = m2,

s = (p1+ p2)
2, t = (p2+ p3)

2.



Picard-Fuchs operator of elliptic curves

• Sunrise integral: An elliptic curve can be obtained either from

– Feynman graph polynomial

– maximal cut

The periods ψ1, ψ2 are the solutions of the homogeneous differential equations.

Adams, Bogner, S.W., ’13, ’14

• In general: The maximal cuts are solutions of the homogeneous differential

equations.

Primo, Tancredi, ’16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.



Maximal cuts

Maximal cut: For a Feynman integral

Iν1ν2...νn =
(

µ2
)ν−lD/2

∫
dDk1

(2π)D
...

dDkl

(2π)D

n

∏
j=1

1

P
ν j

j

take the n-fold residue at

P1 = ...= Pn = 0

of the integrand and integrate over the remaining (lD−n) variables along a contour C .



Maximal cuts

Sunrise :

MaxCutC I1001001 (2−2ε) =

um2

π2

∫

C

dP

(P− t)
1
2 (P− t +4m2)

1
2 (P2+2m2P−4m2t +m4)

1
2

+O (ε) .

Double box :

MaxCutC I1111111 (4−2ε) =

um6

4π4s2

∫

C

dP

(P− t)
1
2 (P− t +4m2)

1
2

(

P2+2m2P−4m2t +m4− 4m2(m2−t)
2

s

)
1
2

+O (ε) .



Three elliptic curves

E(a)
: w2 = (z− t)

(

z− t +4m2
)(

z2+2m2z−4m2t +m4
)

E(b)
: w2 = (z− t)

(

z− t +4m2
)

(

z2+2m2z−4m2t +m4− 4m2
(

m2− t
)2

s

)

E(c)
: w2 = (z− t)

(

z− t +4m2
)

(

z2+
2m2 (s+4t)

(s−4m2)
z+

sm2
(

m2−4t
)

−4m2t2

s−4m2

)



Remarks

• E(a) gives rise to iterated integrals of modular forms of Γ1(6).

• For s → ∞ the curves E(b) and E(c) degenerate to E(a).

• If we would have only one curve, we expect that the result can be written in elliptic

polylogarithms.

• We have three elliptic curves.



Results

The differential equation for the master integrals can be brought into the form

d~I = εA~I,

where A is independent of ε.

The Laurent expansion in ε of all master integrals can be computed systematically to

all orders in ε in terms of iterated integrals.

The solution

- reduces to multiple polylogarithms for t = m2 and

- reduces to iterated integrals of modular forms of Γ1(6) for s = ∞.

Adams, Chaubey, S.W., ’18



Conclusions

• Loop integrals with masses important for top, W/Z- and H-physics.

• May involve elliptic sectors from two loops onwards.

• There is a class of Feynman integrals evaluating to iterated integrals of modular

forms.

• The planar double box integral relavant to tt̄-production with a closed top loop

depends on two variables and involves several elliptic sub-sectors. More than one

elliptic curve occurs. Results expressed in terms of Chen’s iterated integrals.

• We may expect more results in the near future.


