Electroweak corrections in the 2HDM for Higgs-boson production through gluon fusion

Christian Sturm

Universität Würzburg Institut für Theoretische Physik und Astrophysik Theoretische Physik II (TP2) Emil-Hilb-Weg 22 97074 Würzburg

- I. Generalities & Context
- II. Computation
- III. Results
- IV. Summary & Conclusion

based on JHEP 09 (2018) 017 in collaboration with: Laura Jenniches and Sandro Uccirati

- Higgs boson (*H*) discovered at the LHC experiments
 - \hookrightarrow Determine properties of Higgs boson (theory+experiment)
- Higgs boson could be part of extended, more general Higgs sector
 - → Contribute to solve open problems of particle phys., e.g. question of origin of matter–anti-matter asymmetry question of nature of dark matter, ...
- Extension of H sector: Two-Higgs-Doublet Model (2HDM)
- LHC studies 2HDM extension ATLAS: 1712.06386, 1509.00672, 1507.05930, 1506.00285, 1502.04478, 1310.0515, ATLAS-CONF-2013-027,... CMS: CMS-PAS-HIG-17-031, 1603.02991, 1511.03610, 1510.01181, 1506.02301, 1504.04710, 1410.2751,... ↔ precise theory predictions necessary
- Important Higgs boson production: gluon fusion

 $\hookrightarrow \qquad \qquad gg \to H \qquad \qquad H=H_I,H_h$

■ Study effect of extension on Higgs production → EW corrections

Introduction

Context, Motivation & Model

EW corrections to SM Higgs production $gg \rightarrow H \checkmark$ ← 5.1% S. Actis, G. Passarino, C.S., S. Uccirati; G. Degrassi, F. Maltoni; U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini; A. Djouadi, P. Gambino, B. Kniehl ■ EW corrections in SM extensions → can be large! \hookrightarrow example: Higgs production in 4th generation model \checkmark (excluded) G. Passarino, C.S., S. Uccirati; A. Djouadi, P. Gambino, B. Kniehl The 2HDM potential: $\Phi_i = \begin{pmatrix} \Phi_i^+ \\ \frac{1}{\sqrt{2}} (v_i + \rho_i + i\eta_i) \end{pmatrix}, i = 1, 2 \text{ Higgs doublets}, \quad v_i : vevs$ $V(\Phi_1, \Phi_2) = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right)$ $+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right)$ $+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right]$

Here: all parameters real, CP-conserving version

EW corr. in the 2HDM for Higgs production in gluon fusion

KP2

Introduction

■ Diagonalize scalar sector → mass eigenstates, physical basis

$$\begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = R(\alpha) \begin{pmatrix} H_h \\ H_l \end{pmatrix}, \quad \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}, \quad \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = R(\beta) \begin{pmatrix} G_0 \\ H_a \end{pmatrix}$$

$$R(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$$

$$Mass eigenstates,$$

$$new particle spectrum:$$

$$H_l, H_h, H_a, H^{\pm}$$

- α : diagonalizes neutral Higgs mass matrix
- β : diagonalizes other scalar mass matrices, $t_{\beta} = \tan \beta = v_2/v_1$
- Physical parameters:

Introduction Model, Experiment

Higgs basis

$$\Phi_{a} = \phi_{1} \cos \beta + \phi_{2} \sin \beta$$

$$\Phi_{b} = -\phi_{1} \sin \beta + \phi_{2} \cos \beta$$

$$\Phi_{a} = \begin{pmatrix} G^{+} & H^{+} \\ \frac{1}{\sqrt{2}}(v - H_{I}s_{\alpha\beta} + H_{h}c_{\alpha\beta} + iG_{0}) \end{pmatrix} \Phi_{b} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}}(H_{I}c_{\alpha\beta} + H_{h}s_{\alpha\beta} + iH_{a}) \end{pmatrix}$$

$$v = \sqrt{v_{1}^{2} + v_{2}^{2}}$$

- Alignment limit: $c_{\alpha\beta} = \cos(\alpha - \beta) \rightarrow 0,$ $s_{\alpha\beta} = \sin(\alpha - \beta) \rightarrow -1$
- *H_l* has SM-like couplings to fermions and gauge bosons
- Decoupling limit: Alignment limit
 + new mass scales heavy
- Constraints on parameters → LHC experiments

Introduction Model, Experiment

Higgs basis

$$\Phi_{a} = \phi_{1} \cos \beta + \phi_{2} \sin \beta$$

$$\Phi_{b} = -\phi_{1} \sin \beta + \phi_{2} \cos \beta$$

$$\Phi_{a} = \begin{pmatrix} G^{+} & H^{+} \\ \frac{1}{\sqrt{2}}(v - H_{I}s_{\alpha\beta} + H_{h}c_{\alpha\beta} + iG_{0}) \end{pmatrix} \Phi_{b} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}}(H_{I}c_{\alpha\beta} + H_{h}s_{\alpha\beta} + iH_{a}) \end{pmatrix}$$

$$v = \sqrt{v_{1}^{2} + v_{2}^{2}}$$

- Alignment limit: $c_{\alpha\beta} = \cos(\alpha - \beta) \rightarrow 0,$ $s_{\alpha\beta} = \sin(\alpha - \beta) \rightarrow -1$
- *H_I* has SM-like couplings to fermions and gauge bosons
- Decoupling limit: Alignment limit
 + new mass scales heavy
- Constraints on parameters → LHC experiments

4 C. Sturm, HP², Freiburg, 02.10.2018

Introduction

Process

■ Here: only top-quark massive fermion ■ The process $g + g \rightarrow H_I$, H_h at LO

 $g_{\text{const}} \xrightarrow{c_{a\beta}/t_{\beta}-s_{a\beta}} = c_{H_{h}} \text{ 2HDM: multiplicative factor} \\ f_{H_{h}} \xrightarrow{c_{a\beta}/t_{\beta}+c_{a\beta}} c_{H_{h}} \text{ compared to SM}$

Factor c_H can be large/small

- $\hookrightarrow \text{choice of parameters } \alpha, \, \beta \leadsto \text{LO suppressed}$
- \hookrightarrow NLO EW amp. not \propto same factor \rightsquigarrow pot. big NLO corr.
- Compared to QCD computation of EW corrections in 2HDM more involved
 - \hookrightarrow new diagrams

Setup

■ 2HDM Feynman rules generated with FeynRules

LA. Alloul, N. Christensen, C. Degrande, C. Duhr, B. Fuks

Diagram generation with QGRAF P. Nogueira

Build amplitude with in-house code QGS

QGS: extension of GraphShot (GS) S. Actis, A. Ferroglia, L. Jenniches, G. Passarino, M. Passera, C. S., S. Uccirati performs algebraic manipulations, FORM based

J. Kuipers, T. Ueda, J. Vermaseren, J. Vollinga

- perform traces, remove reducible scalar products, symmetrize integrals, tadpole reduction, counter terms, extracts pole-part of loop diagrams, renormalization⁺,...
- UV-finite amplitude integrals classified into different topologies: subdivided in scalar, vector and tensor type integrals

└→ mapped on Form factors

→ Form factors are evaluated numerically in Feynman parametric space (Fortran)

Collinear singularities

- No real corrections to $gg \rightarrow H$ (considering EW corrections) \Rightarrow collinear singularities cancel in pure virtual amplitude
 - \Rightarrow Check of calculation
- Collinear singularities are regularized by small fermion mass *m*; singularities become manifest as $\log^{1}(m), \log^{2}(m)$

- Collinear logarithms of: 1^{*st*}+2^{*nd*} generation:
 - $\log^2 \rightarrow$ analytically \checkmark $\log^2 \rightarrow$ analytically \checkmark

- 3^d generation:
- $\log^1 \rightarrow$ analytically $\checkmark \log^1 \rightarrow$ special case analytically $gg \rightarrow H_l$, alignment limit \checkmark otherwise coeff numerically
 </

2HDM renormalization

- Higgs masses: on-shell
- Mixing angles: α , β → different schemes $\overline{\text{MS}}$ ct's $\delta \overline{\alpha}$, $\delta \overline{\beta}$ fixed: $H_I \rightarrow \tau^+ \tau^-$, $H_a \rightarrow \tau^+ \tau^-$ UV finite A. Denner, L. Jenniches, J. Lang, C.S. $\delta \overline{z}_{H,H} \rightarrow \overline{z}_{H,H} \rightarrow \Sigma_{H,H}^{\text{pp}} (M_{u}^{2}) + \Sigma_{H,H}^{\text{pp}} (M_{u}^{2}) + 2h_{H,H}^{\text{pp}} = \delta \overline{z}_{H,H} \rightarrow \overline{z}_{H,H}^{\text{pp}}$

$$\delta\bar{\alpha} = \frac{\delta\overline{Z}_{H_{h}H_{l}} - \delta\overline{Z}_{H_{l}H_{h}}}{4} = \frac{\Sigma_{H_{h}H_{l}}^{\mu\nu}(M_{H_{h}}^{\mu}) + \Sigma_{H_{h}H_{l}}^{\mu}(M_{H_{l}}^{\mu}) + 2\ell_{H_{l}H_{h}}}{2(M_{H_{h}}^{\mu} - M_{H_{l}}^{2})}, \quad \delta\bar{\beta} = \frac{\delta\overline{Z}_{G_{0}H_{a}} - \delta\overline{Z}_{H_{a}G_{0}}}{4}$$

- Proper treatment of Higgs tadpoles: *FJ* tadpole scheme gauge independent physical ct's
- Scale dependent amplitude
- $\bar{\alpha}$, $\bar{\beta}$ scale dependent
- Running parameters $\bar{\alpha}$, $\bar{\beta}$, \overline{M}_{sb} RGEs

$$\frac{\partial \bar{\alpha}}{\partial \ln \mu^2} = B_{\alpha}(\bar{\alpha}(\mu), \bar{\beta}(\mu), \overline{M}_{sb}(\mu)), \quad \frac{\partial \bar{\beta}}{\partial \ln \mu^2} = B_{\beta}(\bar{\alpha}(\mu), \bar{\beta}(\mu), \overline{M}_{sb}(\mu))$$
$$\frac{\partial \overline{M}_{sb}}{\partial \ln \mu^2} = B_{M_{sb}}(\bar{\alpha}(\mu), \bar{\beta}(\mu), \overline{M}_{sb}(\mu))$$

coupled system of DEQs

Logarithmic scale dependence, example $g + g \rightarrow H_l$: $c_{\alpha\beta} = 0$

$$\begin{split} \delta_{\mathsf{EW}}^{\mathsf{NLO},\mu-\mathsf{dep.}} &= \frac{G_f \sqrt{2}}{8\pi^2 t_\beta^2 M_{H_h}^2 (M_{H_h}^2 - M_{H_l}^2)} \mathsf{ln} \frac{\mu^2}{M_{H_l}^2} \\ &\times \left[(1 - t_\beta^2) (M_{H_h}^2 - M_{sb}^2) \left[3M_{H_h}^2 M_{H_l}^2 + M_{sb}^2 (M_{H_a}^2 + 2M_{H^\pm}^2 - 3M_{H_h}^2) \right] \\ &+ 6m_t^2 M_{H_l}^2 (M_{H_h}^2 - 4M_{sb}^2 m_t^2 / M_{H_l}^2) \right] \end{split}$$

 \hookrightarrow Coefficient depends on the "choice" of M_{H_h} , t_{β} ,... e.g. $t_{\beta} = 1$, $M_{H_h} \approx 2M_{sb}m_t/M_{H_l} \rightarrow$ coeff. small, small scale dependence

e.g. $M_{H_h} \approx M_{H_l} \rightarrow$ enhancement, large scale dependence

 $\hookrightarrow \text{ scale dependence can be quite different} \\ \text{for different scenarios but same process}$

 $c_{\alpha\beta} \neq$ 0: expression lengthy, but similar features

Renormalization

Scale independent schemes

J. Espinosa, I. Navarro, Y. Yamada, 2HDM: Kanemura, Kikuchi, Yagyu;

M. Krause, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche (pt); A. Denner, J. Lang, S. Uccirati (BFM)

- on-shell $\delta\alpha^{\rm os} = \frac{\Sigma_{H_h H_l}(M_{H_h}^2) + \Sigma_{H_h H_l}(M_{H_l}^2) + \Sigma_{H_h H_l}^{\rm add}(M_{H_h}^2) + \Sigma_{H_h H_l}^{\rm add}(M_{H_l}^2) + 2t_{H_l H_h}}{2(M_{H_l}^2 - M_{H_l}^2)}, \quad \delta\beta^{\rm os} = \dots \text{ analog }$ (equivalent to self-energy in BFM) - p* scheme $\delta\alpha^* = \frac{\Sigma_{H_hH_l}(\rho^{*2}) + t_{H_lH_h}}{M_{H_h}^2 - M_{H_l}^2}, \quad \delta\beta^* = \dots \text{ analog } \quad \text{ with } \rho^{*2} = (M_{H_h}^2 + M_{H_l}^2)/2$ Process dependent (proc) $\Gamma_{\text{work}}^{\text{NLO}}(H_h \to \tau^+ \tau^-) = \Gamma^{\text{LO}}(H_h \to \tau^+ \tau^-), \Gamma_{\text{work}}^{\text{NLO}}(H_a \to \tau^+ \tau^-) = \Gamma^{\text{LO}}(H_a \to \tau^+ \tau^-)$ 2HDM: M. Krause, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche

■ Further schemes L. Altenkamp, S. Dittmaier, H. Rzehak; A. Denner, S. Dittmaier, J.-N. Lang currently not implemented yet

10 C. Sturm, HP², Freiburg, 02.10.2018

EW corr. in the 2HDM for Higgs production in gluon fusion

Results

 $gg \rightarrow H_l$

EW corr. $\sigma_{\text{EW}}^{\text{NLO}} = K_{\text{EW}}^{\text{NLO}} \sigma^{\text{LO}}$ as fct. of M_{H_h}

Example scenario: $t_{\beta} = 2$, $M^* = 700$ GeV except M_{H_b}

Ŗ

Results $gg \rightarrow H_h$, same scenario

EW corr. in the 2HDM for Higgs production in gluon fusion

Benchmark points (BPs)

Example BPs

- alignment limit, $c_{\alpha\beta} = 0$:

M _{H_h}	M _{Ha}	M _{H±}	M _{sb}	t_{β}	$C_{H_i}^2$	$C_{H_h}^2$
200 GeV	500 GeV	200 GeV	198.7 GeV	1.5	1	0.4
200 GeV	500 GeV	500 GeV	198.7 GeV	1.5	1	0.4
400 GeV	225 GeV	225 GeV	0 GeV	1.5	1	0.4
400 GeV	100 GeV	400 GeV	0 GeV	1.5	1	0.4
180 GeV	420 GeV	420 GeV	129.1 GeV	3	1	0.1
	200 GeV 200 GeV 400 GeV 400 GeV 180 GeV	MHh MHa 200 GeV 500 GeV 200 GeV 500 GeV 400 GeV 225 GeV 400 GeV 100 GeV 180 GeV 420 GeV	m _{H_h} m _{H_a} m _{H_a} 200 GeV 500 GeV 200 GeV 200 GeV 500 GeV 500 GeV 400 GeV 225 GeV 225 GeV 400 GeV 100 GeV 400 GeV 180 GeV 420 GeV 420 GeV	mm _h mm _h mm _h mm _{sb} 200 GeV 500 GeV 200 GeV 198.7 GeV 200 GeV 500 GeV 500 GeV 198.7 GeV 400 GeV 225 GeV 225 GeV 0 GeV 400 GeV 100 GeV 400 GeV 0 GeV 180 GeV 420 GeV 420 GeV 129.1 GeV	mm _h mm ₄ mm ₄ mm ₆ up 200 GeV 500 GeV 200 GeV 1.5 200 GeV 500 GeV 500 GeV 1.87 GeV 1.5 400 GeV 225 GeV 225 GeV 0 GeV 1.5 400 GeV 100 GeV 400 GeV 0 GeV 1.5 180 GeV 400 GeV 400 GeV 1.5 1.5	mm _h mm _h mm _± mm _{s0} $\varphi_{\rm F}$ $\varphi_{\rm H}$ 200 GeV 500 GeV 200 GeV 198.7 GeV 1.5 1 200 GeV 205 GeV 205 GeV 198.7 GeV 1.5 1 400 GeV 225 GeV 225 GeV 0 GeV 1.5 1 400 GeV 100 GeV 400 GeV 0 GeV 1.5 1 180 GeV 420 GeV 420 GeV 129.1 GeV 3 1

BPX_{XX}: 1610.07922

- general case, $c_{\alpha\beta} \neq 0$:

BP	M _{Hh}	M _{Ha}	M _{H±}	M _{sb}	tβ	$C_{\alpha\beta}$	$C_{H_l}^2$	$C_{H_h}^2$
<i>a</i> -1	700 GeV	700 GeV	670 GeV	624.5 GeV	1.5	-0.0910	0.9	0.6
<i>b</i> -1	200 GeV	383 GeV	383 GeV	204.2 GeV	2.52	-0.0346	1.0	0.2
BP2 _{2A}	500 GeV	500 GeV	500 GeV	500 GeV	7	0.28	1.0	0.02
BP4 ₃	263.7 GeV	6.3 GeV	308.3 GeV	81.5 GeV	1.9	0.14107	1.1	0.1
BP4 ₄	227.1 GeV	24.7 GeV	226.8 GeV	89.6 GeV	1.8	0.14107	1.1	0.2

a-1, b-1: 1403.1264, BPX_{XX}: 1610.07922

Essentially any other scenario can be computed too!

- Corrections: ~ order several percent
- Corrections mainly of comparable size with SM correction (~ 5.1%)
- Corrections sensitive to BPs
- Similar corrections in different schemes with few exceptions, MS different, large/small scale dependence

$c_{\alpha\beta} = 0$:

ВР	$K_{\rm EW}^{\rm OS}$	$K_{ m EW}^{p^*}$	$K_{ m EW}^{ m proc}$	$\mathcal{K}_{\mathrm{EW}}^{\overline{\mathrm{MS}}}$
2 _{1A}	1.053	1.063	1.101	$0.994 \stackrel{-0.030}{+0.342}$
2 _{1B}	1.038	1.048	1.044	0.930 +0.066 +2.389
2 _{1C}	1.043	1.044	1.099	$1.126 \stackrel{-0.001}{-0.007}$
2 _{1D}	1.029	1.035	1.042	1.145 -0.012 -0.015
3 _{A1}	1.041	1.040	1.045	1.118 -0.042 -0.010

$c_{\alpha\beta} \neq 0$:

ВР	$K_{\rm EW}^{\rm OS}$	$K_{\rm EW}^{p^*}$	$K_{\rm EW}^{\rm proc}$	$\mathcal{K}_{\mathrm{EW}}^{\overline{\mathrm{MS}}}$
<i>a</i> -1	1.043	1.047	1.048	0.962 +0.042 +2.634
<i>b</i> -1	1.048	1.045	1.054	0.995 +0.002 +0.175
2 _{2A}	1.017	1.018	1.015	1.006 -0.871
4 ₃	1.042	1.043	1.038	$1.126 \stackrel{-0.022}{+0.030}$
44	1.043	1.044	1.038	$1.103 \substack{+0.002 \\ +0.002}$

Results

Corrections to $gg \rightarrow H_h$

<u> </u>	_	n	•
$\boldsymbol{\omega}_{\alpha\beta}$	_	U	•

ВР	$\overline{K}_{\rm EW}^{\rm os}$	$\overline{K}_{\rm EW}^{\rho^*}$	$\overline{K}_{\mathrm{EW}}^{\mathrm{proc}}$	$\overline{K}_{\mathrm{EW}}^{\overline{\mathrm{MS}}}$
2 _{1A}	0.486	0.492	0.426	0.655 +0.197
2 _{1B}	0.177	0.178	0.166	0.257 -0.033
2 _{1C}	0.958	0.950	0.822	0.822 +0.176
2 _{1D}	0.854	0.840	0.803	0.693 +0.244 -0.095
3 _{A1}	0.581	0.580	0.486	0.336 +0.667

$$c_{lphaeta}
eq 0$$
:

вр	$\overline{K}_{\rm EW}^{\rm OS}$	$\overline{K}_{\mathrm{EW}}^{p^*}$	$\overline{K}_{\mathrm{EW}}^{\mathrm{proc}}$	$\overline{K}_{\mathrm{EW}}^{\overline{\mathrm{MS}}}$
<i>a</i> -1	1.145	1.161	1.121	$1.401 \stackrel{+0.253}{_{-1.385}}$
<i>b</i> -1	0.696	0.693	0.628	0.981 +0.154 -0.574
2 _{2A}	7.504	7.456	7.517	4.030 +0.758
43	0.945	0.941	0.979	$0.580 \substack{+0.531 \\ -0.171}$
44	1.028	1.024	1.067	$0.807 \stackrel{+ 0.322}{- 0.190}$

$$\underbrace{|A^{(1)}|^2}_{\text{LO}} + \underbrace{2\text{Re}(A^{(1)}A^{(2)*})}_{\text{NLO}} + \underbrace{|A^{(2)}|^2}_{\text{CNNLO}} \equiv |A^{(1)}|^2 \overline{K}_{\text{EW}}^{\text{NLO}}$$

- Large corrections
- Strong sensitivity to BPs
- MS strong scale dependence

Summary & Conclusion

Discussed production of light/heavy, scalar, neutral Higgs $g \, g \to H_l \qquad g \, g \to H_h$ within 2HDM

- Extended code for computation of 2-loop EW corrections in 2HDM in several schemes
- Can determine the EW corrections for essentially any scenario (masses, angles)
- EW corrections for various scenarios presented

Corrections sensitive to details of scenario

- For light Higgs corrections mostly comparable with SM
- For heavy Higgs corrections can be very large

 \rightsquigarrow as important as QCD corrections

Results applicable to decay widths

$$H_l \rightarrow g g$$

 $H_h
ightarrow g g$

same δ_{EW}

EW corr. in the 2HDM for Higgs production in gluon fusion

$gg ightarrow H_l$ Alignment / decoupling limit

18 C. Sturm, HP², Freiburg, 02.10.2018

EW corr. in the 2HDM for Higgs production in gluon fusion

► P