# Five-Parton Two-Loop Amplitudes from Numerical Unitarity

#### Vasily Sotnikov

High Precision for Hard Processes (HP2 2018), Freiburg  $2^{\rm nd}$  October 2018

in collaboration with S. Abreu, F. Febres Cordero, H. Ita, B. Page,

University of Freiburg

Based on [arXiv:1809.09067]





- 1. Introduction
- 2. Two-loop Numerical Unitarity

3. New Developments for Fermions

- 4. Status and Results
- 5. Outlook

# Introduction

#### Motivation

#### Precision era at the LHC

- No direct detection of new physics  $\implies$  precision measurements
- Rule of thumb: to achieve accuracy of theory predictions at a level of a few percent, NNLO computations are required
- Physical case for 3j, H + 2j, V + 2j,  $t\bar{t} + j$ , VV'j processes

#### State of the art

- Many  $2 \rightarrow 2$  processes are available at NNLO QCD, next frontier is  $2 \rightarrow 3$
- Handling IR divergences for  $2 \rightarrow 3$  processes is very challenging
- Huge effort towards computation of multi-scale Feynman integrals
- 2 → 3 two-loop amplitudes are being actively attacked and some first results have been recently achieved (talks by Christian Brønnum-Hansen and Herschel Chawdhry)

We focus on computation of two-loop amplitudes with the numerical unitarity method.

# **Two-loop Numerical Unitarity**

### The "Standard" Approach to General Two-loop Amplitudes



#### Challenges

- Large expressions
- Solving IBP relations (producing reduction tables) is particularly difficult

### The "Standard" Approach to General Two-loop Amplitudes



#### Challenges

- Large expressions
- Solving IBP relations (producing reduction tables) is particularly difficult

try to avoid these by

#### Two-loop numerical unitarity

- Only a *targeted set of IBP relations* is required for each topology
- Implicit numerical reduction to master integrals
- Fully *numerical framework* mitigates sensitivity to additional scales

$$\label{eq:constraint} \overbrace{\mathcal{A}(\ell_l) = \sum_{\text{topologies } \Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} \frac{c_{\Gamma,i} \, m_{\Gamma,i}(\ell_l)}{\prod_{\text{props } j} \rho_{\Gamma,j}}}$$

Based on unitarity approach

[Bern, Dixon, Kosower, Dunbar '94, '95] [Britto, Feng, Cachazo '05] [Ossola, Papadopoulos, Pittau '07] [Ellis, Giele, Kunszt '08] [Giele, Kunszt, Melnikov '08]

Recent work

[Badger, Frellesvig, Zhang '12] [Zhang '12] [Mastrolia, Mirabella, Ossola, Peraro '13] [Mastrolia, Peraro, Primo '16] [Abreu, Febres Cordero, Ita, Jaquier, Page, Zeng '17]









1. Surface terms naturally produced by IBPs

$$0 = \int \prod_{l=1,2} d^D \ell_l \frac{\partial}{\partial \ell_j^{\nu}} \left[ \frac{u_j^{\nu}}{\prod_{\mathsf{props } k} \rho_k} \right]$$

• Unitarity compatible IBP relations for a topology  $\Gamma$  by controlling powers of  $\rho_j$ [Gluza, Kadja, Kosower '11]

$$u_i^{\nu} \frac{\partial}{\partial \ell_i^{\nu}} \rho_j = f_j \rho_j$$

 Compute IBP-generating vectors using SINGULAR [Abreu, Febres Cordero, Ita, Page, Zeng '17] (Related [Ita '15] [Larsen, Zhang '15][Georgoudis, Larsen, Zhang '16])

$$\begin{pmatrix} u_{ka}^{\mathsf{loop}}(\alpha,\rho)\ell_a^{\nu} + u_{kb}^{\mathsf{ext}}(\alpha,\rho)p_b^{\nu} \end{pmatrix} \frac{\partial}{\partial \ell_k^{\nu}} \begin{pmatrix} \rho_{j(1)} \\ \rho_{j(2)} \\ \vdots \\ \rho_{j(|\Gamma|)} \end{pmatrix} - \begin{pmatrix} f_{j(1)}\rho_{j(1)} \\ f_{j(2)}\rho_{j(2)} \\ \vdots \\ f_{j(|\Gamma|)}\rho_{j(|\Gamma|)} \end{pmatrix} = 0$$

2. Complete remaining function space with master integrands

### **Coefficients from Numerical Unitarity**

#### For each topology

- 1. Construct on-shell loop momenta from  $\rho_{\Gamma,i}(\ell_l) = 0$
- 2. Build cut equations (linear systems) for master/surface coefficients  $c_{\Gamma,i}$  by sampling  $\ell_l$



- 3. Invert linear systems for coefficients  $c_{\Gamma,i}$ 
  - Solve for (a set of) given values of dimensional regularization parameters D and  $D_s$
  - Reconstruct (exactly) rational functions  $c_{\Gamma,i}(D, D_s)$

### **Topologies For 5-Parton Amplitudes**



Full hierarchy

### **Topologies For 5-Parton Amplitudes**



Master integrals

[Gehrmann, Remiddi '00] [Papdopoulos et al '15] [Gehrmann, Henn, Presti '18]

# New Developments for Fermions

### Dimensional Regularization and Numerical Unitarity



### Dimensional Regularization and Numerical Unitarity



#### **General Strategy**

- Work in 't Hooft-Veltman (HV) scheme  $\implies$  many simplifications
- Separate dimensional regularization parameter in
  - Icop momenta, enters through IBPs
  - D<sub>s</sub> tensor and spinor representations
- Compute tree amplitudes in  $D_s = \{6, 8, 10\}$  dimensions to reconstruct *(quadratic)*  $D_s$ -dependence (aka dimensional reconstruction [Giele, Kunszt, Melnikov '08] [Abreu, Febres Cordero, Ita, Jaquier, Page, Zeng '17])

### Dimensional Regularization and Numerical Unitarity

#### Issues specific to treatment of quarks

- Relation of the infinite-dimensional Clifford algebra to finite at any given  $D_s$
- Consistent embedding of external states
  - trivial for vector particles
  - non-trivial for fermions
- Definition of dimensionally regularized helicity amplitudes with external quarks is ambiguous
- Colour treatment for quarks is more involved

Some of these issues are relevant already at one loop for massive quarks [Anger, VS '18]

In two-loop computations they become relevant for massless quarks as well!

# Clifford Algebra in $D_s$ Dimensions

Clifford algebra in  $D_s$  dimensions is defined by

$$\{\gamma^{\mu}_{[D_s]}, \gamma^{\nu}_{[D_s]}\} = 2g^{\mu\nu}_{[D_s]}\mathbb{1}_{[D_s]}$$

Useful to expose tensor product structure:

$$(\gamma^{\mu}_{[D_s]})^{b\lambda}_{a\kappa} = \begin{cases} \left(\gamma^{\mu}_{[4]}\right)^b_a \delta^{\lambda}_{\kappa}, & 0 \le \mu \le 3, \\ & \tilde{\gamma}_{[4]} \equiv i(\gamma^0 \gamma^1 \gamma^2 \gamma^3) \\ & (\tilde{\gamma}_{[4]})^2 = \mathbb{1}_{[4]} \\ & (\tilde{\gamma}_{[4]})^b_a \left(\gamma^{(\mu-4)}_{[D_s-4]}\right)^{\lambda}_{\kappa}, \quad \mu > 3, \end{cases}$$

# Clifford Algebra in $D_s$ Dimensions

Clifford algebra in  $D_s$  dimensions is defined by

$$\{\gamma^{\mu}_{[D_s]}, \gamma^{\nu}_{[D_s]}\} = 2g^{\mu\nu}_{[D_s]}\mathbb{1}_{[D_s]}$$

Useful to expose tensor product structure:

$$(\gamma^{\mu}_{[D_{S}]})^{b\lambda}_{a\kappa} = \begin{cases} \left(\gamma^{\mu}_{[4]}\right)^{b}_{a} \delta^{\lambda}_{\kappa}, & 0 \leq \mu \leq 3, \\ & \tilde{\gamma}_{[4]} \equiv i(\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}) \\ & (\tilde{\gamma}_{[4]})^{2} = \mathbb{1}_{[4]} \\ & (\tilde{\gamma}_{[4]})^{b}_{a} \left(\gamma^{(\mu-4)}_{[D_{S}-4]}\right)^{\lambda}_{\kappa}, \quad \mu > 3, \end{cases}$$

Spinors for external states (4-dim momenta) from tensor product representation:

| $\psi_{s,a\kappa} = (u_h)_a(\eta^i)_{\kappa}$                    | $(\eta^i)_{\kappa} = \delta^i_{\kappa}$                  |
|------------------------------------------------------------------|----------------------------------------------------------|
| $\bar{\psi}_s^{a\kappa} = (\bar{u}_h)^a (\bar{\eta}_i)^{\kappa}$ | $(\bar{\eta}_i)^{\kappa} (\eta^j)_{\kappa} = \delta_i^j$ |

Spinors for external states (4-dim momenta) from tensor product representation:

$$\bar{u}^{a} \left( \gamma^{\mu_{1}}_{[D_{s}]} \gamma^{\hat{\mu}_{2}}_{[D_{s}]} \gamma^{\mu_{3}}_{[D_{s}]} \gamma^{\hat{\mu}_{4}}_{[D_{s}]} \right)^{b\lambda}_{a\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} \eta^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[2]} \gamma^{(\hat{\mu}_{3}-4)}_{[2]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{1}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[2]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[2]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{\mu_{3}-4}_{[4]} \eta^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{\mu_{3}-4}_{[4]} \eta^{(\hat{\mu}_{3}-4)}_{[4]} \right)^{\lambda}_{\kappa} u_{b} = -\bar{u}\gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{\mu_{3}-4}_{[4]} \eta^{(\hat{\mu}_{3}-4)}_{[4]} \eta^{$$

Spinors for external states (4-dim momenta) from tensor product representation:

Example  

$$\bar{u}^{a} \left( \gamma^{\mu_{1}}_{[D_{s}]} \gamma^{\dot{\mu}_{2}}_{[D_{s}]} \gamma^{\mu_{3}}_{[D_{s}]} \gamma^{\dot{\mu}_{4}}_{[D_{s}]} \right)^{b\lambda}_{a\kappa} u_{b} = - \bar{u} \gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\dot{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\dot{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa}$$

Spinors for external states (4-dim momenta) from tensor product representation:

Example  

$$\bar{u}^{a} \left( \gamma^{\mu_{1}}_{[D_{s}]} \gamma^{\hat{\mu}_{2}}_{[D_{s}]} \gamma^{\mu_{3}}_{[D_{s}]} \gamma^{\hat{\mu}_{4}}_{[D_{s}]} \right)^{b\lambda}_{a\kappa} u_{b} = - \bar{u} \gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\hat{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\hat{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa}$$

Question: can one define helicity amplitudes unambiguously?

Spinors for external states (4-dim momenta) from tensor product representation:

Example  

$$\bar{u}^{a} \left( \gamma^{\mu_{1}}_{[D_{s}]} \gamma^{\dot{\mu}_{2}}_{[D_{s}]} \gamma^{\mu_{3}}_{[D_{s}]} \gamma^{\dot{\mu}_{4}}_{[D_{s}]} \right)^{b\lambda}_{a\kappa} u_{b} = - \bar{u} \gamma^{\mu_{1}}_{[4]} \gamma^{\mu_{3}}_{[4]} u \cdot \left( \gamma^{(\dot{\mu}_{2}-4)}_{[D_{s}-4]} \gamma^{(\dot{\mu}_{4}-4)}_{[D_{s}-4]} \right)^{\lambda}_{\kappa}$$

Question: can one define helicity amplitudes unambiguously?

Classify tensor structures of spinor indices in  $(D_s - 4)$  dimensions!

Inspired by [Glover '04]

Consider a helicity amplitude  $M^{(k)}$  in  $D_s$  dimensions. Introduce a basis  $\{v_n\}$  for the tensor space in spinor indices beyond  $D_s = 4$ :

$$M^{(k)} = \sum_{n} v_n \, M_n^{(k)}$$

Inspired by [Glover '04]

Consider a helicity amplitude  $M^{(k)}$  in  $D_s$  dimensions. Introduce a basis  $\{v_n\}$  for the tensor space in spinor indices beyond  $D_s = 4$ :

$$M^{(k)} = \sum_{n} v_n M_n^{(k)}$$
 only 4-dim objects (definite *helicity*) open (D\_s - 4) indices

Inspired by [Glover '04]

Consider a helicity amplitude  $M^{(k)}$  in  $D_s$  dimensions. Introduce a basis  $\{v_n\}$  for the tensor space in spinor indices beyond  $D_s = 4$ :

$$M^{(k)} = \sum_{n} v_n M_n^{(k)}$$
 only 4-dim objects (definite *helicity*) only 4-dim objects (definite *helicity*) only 4-dim objects (definite *helicity*)

Example (a pair  $q\bar{q}$  of external quarks)

$$M^{(k)}(q, \bar{q}, g, \dots, g) = w_0 M_0^{(k)}, \qquad (w_0)_{\kappa}^{\lambda} := \delta_{\kappa}^{\lambda}.$$

to any loop order.

Inspired by [Glover '04]

Consider a helicity amplitude  $M^{(k)}$  in  $D_s$  dimensions. Introduce a basis  $\{v_n\}$  for the tensor space in spinor indices beyond  $D_s = 4$ :

$$M^{(k)} = \sum_{n} v_n M_n^{(k)}$$
 only 4-dim objects (definite *helicity*) only 4-dim objects (definite *helicity*) only 4-dim objects (definite *helicity*) only 4-dim objects (definite *helicity*)

Example (a pair  $q\bar{q}$  of external quarks)

$$M^{(k)}(q, \bar{q}, g, \dots, g) = w_0 M_0^{(k)}, \qquad (w_0)_{\kappa}^{\lambda} := \delta_{\kappa}^{\lambda}.$$

to any loop order.

Example ( $q\bar{q} Q\bar{Q}$  @ tree level)

$$\begin{split} \left(M^{(0)}\right)_{\kappa_{1}\kappa_{2}}^{\lambda_{1}\lambda_{2}} &\sim \quad \bar{u}^{a_{1}}\left(\gamma_{[D_{s}]}^{\mu}\right)_{a_{1}\kappa_{1}}^{b_{1}\lambda_{1}} u_{b_{1}} \cdot \quad \bar{u}^{a_{2}}\left(\gamma_{[D_{s}]\mu}\right)_{a_{2}\kappa_{2}}^{b_{2}\lambda_{2}} u_{b_{2}} \rightarrow \\ & \left\{ \begin{aligned} M_{0}^{(0)} \,\delta_{\kappa_{1}}^{\lambda_{1}}\delta_{\kappa_{2}}^{\lambda_{2}}, & \leftarrow \text{ in HV} \\ M_{0}^{(0)} \,\delta_{\kappa_{1}}^{\lambda_{1}}\delta_{\kappa_{2}}^{\lambda_{2}} + M_{1}^{(0)}\left(\gamma_{[D_{s}-4]}^{\mu}\right)_{\kappa_{1}}^{\lambda_{1}}\left(\gamma_{[D_{s}-4]\mu}\right)_{\kappa_{2}}^{\lambda_{2}} \quad \leftarrow \text{ in CDR} \end{aligned} \right.$$

Example (two quark pairs of different flavors,  $q\bar{q}$  and  $Q\bar{Q}$ )

$$\begin{split} & (v_0)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = \delta_{\kappa_1}^{\lambda_1} \delta_{\kappa_2}^{\lambda_2} , \\ & (v_1)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = (\gamma_{[D_s-4]}^{\mu_1})_{\kappa_1}^{\lambda_1} (\gamma_{[D_s-4]\mu_1})_{\kappa_2}^{\lambda_2} , \\ & \vdots \\ & (v_m)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = (\gamma_{[D_s-4]}^{\mu_1\dots\mu_m})_{\kappa_1}^{\lambda_1} (\gamma_{[D_s-4]\mu_1\dots\mu_m})_{\kappa_2}^{\lambda_2} \\ & \vdots \\ \end{split}$$

*infinite-dimensional* for  $D_s = 4 - 2\epsilon$ , but finite to any (finite) loop order!

$$M^{(k)}(q,\bar{q},Q,\bar{Q},g,\ldots,g) = \sum_{n=0}^{n_k} v_n M_n^{(k)}$$

| tree (k=0)     | $n_0 = 0$ |
|----------------|-----------|
| one loop (k=1) | $n_1 = 3$ |
| two loop (k=2) | $n_2 = 5$ |

Example (two quark pairs of different flavors,  $q\bar{q}$  and  $Q\bar{Q}$ )

$$\begin{split} &(v_0)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = \delta_{\kappa_1}^{\lambda_1} \delta_{\kappa_2}^{\lambda_2} , \\ &(v_1)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = (\gamma_{[D_s-4]}^{\mu_1})_{\kappa_1}^{\lambda_1} (\gamma_{[D_s-4]\mu_1})_{\kappa_2}^{\lambda_2} , \\ &\vdots \\ &(v_m)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = (\gamma_{[D_s-4]}^{\mu_1\dots\mu_m})_{\kappa_1}^{\lambda_1} (\gamma_{[D_s-4]\mu_1\dots\mu_m})_{\kappa_2}^{\lambda_2} \\ &\vdots \\ \end{split}$$

*infinite-dimensional* for  $D_s = 4 - 2\epsilon$ , but finite to any (finite) loop order!

$$M^{(k)}(q,\bar{q},Q,\bar{Q},g,\ldots,g) = \sum_{n=0}^{n_k} v_n M_n^{(k)}$$

$$\begin{array}{ll} \mbox{tree (k=0)} & n_0 = 0 \\ \mbox{one loop (k=1)} & n_1 = 3 \\ \mbox{two loop (k=2)} & n_2 = 5 \end{array}$$

#### Note

- Independent of number of external gluons in HV
- Integer  $D_s$  values can be used to represent the appropriate limit of the calculation in generic  $D_s$

#### Extraction of tensor coefficients

We constructed the basis  $\{v_n\}$  such that

$$v_n^{\dagger} \cdot v_m = c_n \delta_m^n$$
,  $c_0 = 1$  and  $c_{n>0}(D_s) = \mathcal{O}(\epsilon)$   
 $M_n^{(k)} = \frac{1}{c_n} v_n^{\dagger} \cdot M^{(k)}$ 

#### Extraction of tensor coefficients

We constructed the basis  $\{v_n\}$  such that

$$\begin{aligned} v_n^{\dagger} \cdot v_m &= c_n \delta_m^n \,, \quad c_0 = 1 \quad \text{and} \quad c_{n>0}(D_s) = \mathcal{O}(\epsilon) \\ M_n^{(k)} &= \frac{1}{c_n} v_n^{\dagger} \cdot M^{(k)} \end{aligned}$$

#### Question

Which tensor structures are (phenomenologically) relevant?

#### Extraction of tensor coefficients

We constructed the basis  $\{v_n\}$  such that

$$\begin{split} v_n^{\dagger} \cdot v_m &= c_n \delta_m^n \,, \quad c_0 = 1 \quad \text{and} \quad c_{n>0}(D_s) = \mathcal{O}(\epsilon) \\ M_n^{(k)} &= \frac{1}{c_n} v_n^{\dagger} \cdot M^{(k)} \end{split}$$

#### Question

Which tensor structures are (phenomenologically) relevant?

- In HV tree amplitudes are chosen to contain no singular gluons  $\implies$  only  $v_0$  contributes
- The tree amplitude acts as a projector on  $v_0$ :

$$\left(M^{(0)}\right)^{\dagger} M^{(2)} = \left(M^{(0)}_0\right)^{\dagger} M^{(2)}_0$$

• It is thus sufficient to compute

$$A^{(2)}(q,\bar{q},Q,\bar{Q},g,\ldots,g) \equiv M_0^{(2)} = v_0^{\dagger} \cdot M^{(2)}(q,\bar{q},Q,\bar{Q},g,\ldots,g)$$

Note: this definition of HV helicity amplitudes agrees with the one demonstrated in [Anger, VS '18]

# Status and Results

- 1. Our C++ framework for D-dimensional multi-loop numerical unitarity is now extended to include fermionic particles
- 2. Our implementation is compact and suitable for running on clusters
- 3. Finished implementation of all processes relevant for  $pp \rightarrow 3j$  production through NNLO QCD at leading color:
  - 5g amplitudes with  $N_f^0$ ,  $N_f^1$ ,  $N_f^2$  contributions
  - 2q3g amplitudes with  $N_f^0$ ,  $N_f^1$ ,  $N_f^2$  contributions 4q1g amplitudes with  $N_f^0$ ,  $N_f^1$ ,  $N_f^2$  contributions
- 4. Evaluation using multi-precision floating point arithmetics as well as using finite fields (lifted to rational numbers) is available:
  - benchmarking and testing benefits considerably from evaluating coefficients of master integrals exactly
  - sampling over phase-space ( $\implies$  integrated cross-section) can be done with floating point evaluations
  - independent numerical setup provides a good consistency check

### Validation

- ✓ Internal consistency checks:
  - surface terms validated against FIRE [arXiv:1408.2372]
  - unitarity (successful fit of ansatz for all topologies, aka "N=N test")
  - · master coefficients consistency between floating point and exact evaluation
- ✓ Known analytic results:

| 4g               | [Bern, de Freitas, Dixon '02]                       |
|------------------|-----------------------------------------------------|
| 2q2g             | [Bern, de Freitas, Dixon '03]                       |
| 4q               | [Glover '04], [Bern, de Freitas '04]                |
| 5g(only "+++++") | [Gehrmann, Henn, Presti '15], [Dunbar, Perkins '16] |

- ✓ Pole structure<sup>\*</sup> [Catani '98] [Sterman, Tejeda-Yeomans '03] [Becher, Neubert '09] [Gardi, Magnea '09]
- ✓ 5g benchmark results of [Badger, Brønnum-Hansen, Hartanto, Peraro '17]
- ✓ Recent computation of  $N_f^0$  contributions for 2q3g and 4q1g amplitudes [Badger, Brønnum-Hansen, Gehrmann, et al. '18] (the latest revision)
- ✓ N=4 SUSY Ward identities (for some amplitudes)
- $\star\,$  using one-loop amplitudes computed to  $\mathcal{O}(\epsilon^2)$  with in-house implementation

# Results for 2q3g Amplitudes



$$\begin{split} A(1_{q},2_{\bar{q}},3_{g},4_{g},5_{g})\Big|_{\text{leading color}} = \\ & \sum_{\sigma\in S_{3}} \left(T^{a_{\sigma}(3)}T^{a_{\sigma}(4)}T^{a_{\sigma}(5)}\right)_{i_{1}}^{\bar{i}_{2}}\times\mathcal{A}(1_{q},2_{\bar{q}},\sigma(3)_{g},\sigma(4)_{g},\sigma(5)_{g})\,, \end{split}$$

Each partial  $\ensuremath{\mathcal{A}}$  is perturbatively expanded as

$$\mathcal{A} = g_0^3 \left( \mathcal{A}^{(0)} + \frac{\alpha_0}{4\pi} N_c \mathcal{A}^{(1)} + \left(\frac{\alpha_0}{4\pi}\right)^2 N_c^2 \mathcal{A}^{(2)} + \mathcal{O}(\alpha_0^3) \right) \qquad \left| \quad \alpha_0 = g_0^2 / (4\pi) \right|$$

and further decomposed into

$$\mathcal{A}^{(2)} = \mathcal{A}^{(2)[N_f^0]} + \frac{N_f}{N_c} \mathcal{A}^{(2)[N_f^1]} + \left(\frac{N_f}{N_c}\right)^2 \mathcal{A}^{(2)[N_f^2]}$$

| $\mathcal{A}^{(2)[N_f^0]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------|
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | -4.000000000    | -33.66432052    | -117.5792214   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 8.000000000     | 51.38308777     | 127.3357346     | 55.24748112     | -511.9128286   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 8.000000000     | 51.38308777     | 137.2047686     | 143.1002284     | -154.2224796   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 8.000000000     | 51.38308777     | 133.2453937     | 110.9941406     | -263.9507190   |
| $\mathcal{A}^{(2)[N_f^1]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1^+_q, 2^{\bar{q}}, 3^+_g, 4^+_g, 5^+_g)$              | 0               | 0               | 1.416882412     | 11.98234731     | 38.78056708    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0.6666666667    | 7.912904946     | 38.94492002     | 78.45710970    |
| $(1_q^+, 2_{\bar{q}}^+, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0.6666666667    | 5.701796856     | 20.47669656     | 20.24036826    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0.6666666667    | 5.878666845     | 21.43074531     | 17.31964894    |
| $\mathcal{A}^{(2)[N_f^2]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.2361470687    | 2.541010053    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0               | 0               | 0.3690523831    | 3.782474720    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0               | 0               | 0.0005343680110 | 0.004830824685 |
| $(1^+_q, 2^{\bar{q}}, 3^g, 4^+_g, 5^+_g)$                | 0               | 0               | 0               | 0.03001269961   | 0.3139119453   |

$$\mathcal{A}^{(\text{norm})} = \begin{cases} \mathcal{A}^{(0)}, & \mathcal{A}^{(0)} \neq 0, \\ \\ \mathcal{A}^{(1)[N_f^0]}(\epsilon = 0), & \mathcal{A}^{(0)} = 0 \end{cases}$$

| Phase space    | e point         |                                |               |
|----------------|-----------------|--------------------------------|---------------|
| $s_{12} = -1,$ | $s_{23} = -8/$  | $'13,  s_{34} = \\ 5_1 = -749$ | = -1094/2431, |
| $s_{45} =$     | -7/17, $s_{23}$ |                                | /7293         |

| $\mathcal{A}^{(2)[N_f^0]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------|
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | -4.000000000    | -33.66432052    | -117.5792214   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 8.000000000     | 51.38308777     | 127.3357346     | 55.24748112     | -511.9128286   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 8.000000000     | 51.38308777     | 137.2047686     | 143.1002284     | -154.2224796   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 8.000000000     | 51.38308777     | 133.2453937     | 110.9941406     | -263.9507190   |
| $\mathcal{A}^{(2)[N_f^1]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1^+_q, 2^{\bar{q}}, 3^+_g, 4^+_g, 5^+_g)$              | 0               | 0               | 1.416882412     | 11.98234731     | 38.78056708    |
| $(1_q^+, 2_{\bar{q}}^{-}, 3_g^+, 4_g^+, 5_g^-)$          | 0               | 0.6666666667    | 7.912904946     | 38.94492002     | 78.45710970    |
| $(1_q^+, 2_{\bar{q}}^{-}, 3_g^+, 4_g^-, 5_g^+)$          | 0               | 0.6666666667    | 5.701796856     | 20.47669656     | 20.24036826    |
| $(1_q^+, 2_{\bar{q}}^{\star}, 3_g^-, 4_g^+, 5_g^+)$      | 0               | 0.6666666667    | 5.878666845     | 21.43074531     | 17.31964894    |
| $\mathcal{A}^{(2)[N_f^2]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.2361470687    | 2.541010053    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0               | 0               | 0.3690523831    | 3.782474720    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0               | 0               | 0.0005343680110 | 0.004830824685 |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.03001269961   | 0.3139119453   |

$$\mathcal{A}^{(\text{norm})} = \begin{cases} \mathcal{A}^{(0)}, & \mathcal{A}^{(0)} \neq 0, \\ \\ \mathcal{A}^{(1)[N_f^0]}(\epsilon = 0), & \mathcal{A}^{(0)} = 0 \end{cases}$$

| Phase space point                                     |
|-------------------------------------------------------|
| $s_{12} = -1,  s_{23} = -8/13,  s_{34} = -1094/2431,$ |
| $s_{45} = -7/17,  s_{51} = -749/7293$                 |

| $\mathcal{A}^{(2)[N_f^0]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------|
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | -4.000000000    | -33.66432052    | -117.5792214   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 8.000000000     | 51.38308777     | 127.3357346     | 55.24748112     | -511.9128286   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 8.000000000     | 51.38308777     | 137.2047686     | 143.1002284     | -154.2224796   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 8.000000000     | 51.38308777     | 133.2453937     | 110.9941406     | -263.9507190   |
| $\mathcal{A}^{(2)[N_f^1]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1^+_q, 2^{\bar{q}}, 3^+_g, 4^+_g, 5^+_g)$              | 0               | 0               | 1.416882412     | 11.98234731     | 38.78056708    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0.6666666667    | 7.912904946     | 38.94492002     | 78.45710970    |
| $(1_q^+, 2_{\bar{q}}^+, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0.6666666667    | 5.701796856     | 20.47669656     | 20.24036826    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0.6666666667    | 5.878666845     | 21.43074531     | 17.31964894    |
| $\mathcal{A}^{(2)[N_f^2]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.2361470687    | 2.541010053    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0               | 0               | 0.3690523831    | 3.782474720    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0               | 0               | 0.0005343680110 | 0.004830824685 |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.03001269961   | 0.3139119453   |

$$\mathcal{A}^{(\text{norm})} = \begin{cases} \mathcal{A}^{(0)}, & \mathcal{A}^{(0)} \neq 0, \\ \\ \mathcal{A}^{(1)[N_f^0]}(\epsilon = 0), & \mathcal{A}^{(0)} = 0 \end{cases}$$

| Phase space point                                     |
|-------------------------------------------------------|
| $s_{12} = -1,  s_{23} = -8/13,  s_{34} = -1094/2431,$ |
| $s_{45} = -7/17,  s_{51} = -749/7293$                 |

| $\mathcal{A}^{(2)[N_f^0]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------|
| $(1^+_q, 2^{\bar{q}}, 3^+_g, 4^+_g, 5^+_g)$              | 0               | 0               | -4.000000000    | -33.66432052    | -117.5792214   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 8.000000000     | 51.38308777     | 127.3357346     | 55.24748112     | -511.9128286   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 8.000000000     | 51.38308777     | 137.2047686     | 143.1002284     | -154.2224796   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 8.000000000     | 51.38308777     | 133.2453937     | 110.9941406     | -263.9507190   |
| $\mathcal{A}^{(2)[N_f^1]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | 1.416882412     | 11.98234731     | 38.78056708    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0.6666666667    | 7.912904946     | 38.94492002     | 78.45710970    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0.6666666667    | 5.701796856     | 20.47669656     | 20.24036826    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0.6666666667    | 5.878666845     | 21.43074531     | 17.31964894    |
| $\mathcal{A}^{(2)[N_f^2]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.2361470687    | 2.541010053    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0               | 0               | 0.3690523831    | 3.782474720    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0               | 0               | 0.0005343680110 | 0.004830824685 |
| $(1^+_q, 2^{\bar{q}}, 3^g, 4^+_g, 5^+_g)$                | 0               | 0               | 0               | 0.03001269961   | 0.3139119453   |

$$\mathcal{A}^{(\text{norm})} = \begin{cases} \mathcal{A}^{(0)}, & \mathcal{A}^{(0)} \neq 0, \\ \\ \mathcal{A}^{(1)[N_f^0]}(\epsilon = 0), & \mathcal{A}^{(0)} = 0 \end{cases}$$

| Phase space point                                     |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|
| $s_{12} = -1,  s_{23} = -8/13,  s_{34} = -1094/2431,$ |  |  |  |  |  |
| $s_{45} = -7/17,  s_{51} = -749/7293$                 |  |  |  |  |  |

| $\mathcal{A}^{(2)[N_f^0]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------|
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | -4.000000000    | -33.66432052    | -117.5792214   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 8.000000000     | 51.38308777     | 127.3357346     | 55.24748112     | -511.9128286   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 8.000000000     | 51.38308777     | 137.2047686     | 143.1002284     | -154.2224796   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 8.000000000     | 51.38308777     | 133.2453937     | 110.9941406     | -263.9507190   |
| $\mathcal{A}^{(2)[N_f^1]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1^+_q, 2^{\bar{q}}, 3^+_g, 4^+_g, 5^+_g)$              | 0               | 0               | 1.416882412     | 11.98234731     | 38.78056708    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0.6666666667    | 7.912904946     | 38.94492002     | 78.45710970    |
| $(1_q^+, 2_{\bar{q}}^+, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0.6666666667    | 5.701796856     | 20.47669656     | 20.24036826    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0.6666666667    | 5.878666845     | 21.43074531     | 17.31964894    |
| $\mathcal{A}^{(2)[N_f^2]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$   |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.2361470687    | 2.541010053    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^+, 5_g^-)$            | 0               | 0               | 0               | 0.3690523831    | 3.782474720    |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^+, 4_g^-, 5_g^+)$            | 0               | 0               | 0               | 0.0005343680110 | 0.004830824685 |
| $(1_q^+, 2_{\bar{q}}^-, 3_g^-, 4_g^+, 5_g^+)$            | 0               | 0               | 0               | 0.03001269961   | 0.3139119453   |

$$\mathcal{A}^{(\text{norm})} = \begin{cases} \mathcal{A}^{(0)}, & \mathcal{A}^{(0)} \neq 0, \\ \\ \mathcal{A}^{(1)[N_f^0]}(\epsilon = 0), & \mathcal{A}^{(0)} = 0 \end{cases}$$

| Phase space point |              |                  |                     |      |  |  |  |
|-------------------|--------------|------------------|---------------------|------|--|--|--|
| $s_{12} = -1,$    | $s_{23} = -$ | $\frac{8}{13}$ , | $s_{34} = -1094/24$ | 131, |  |  |  |
| $s_{45} =$        | -7/17,       | $s_{51} =$       | -749/7293           |      |  |  |  |

### Results for 4q1g Amplitudes



$$\begin{split} A(1_q, 2_{\bar{q}}, 3_Q, 4_{\bar{Q}}, 5_g) \Big|_{\text{leading color}} &= \\ (T^{a_5})_{i_3}^{\bar{\imath}_2} \delta_{i_1}^{\bar{\imath}_4} \mathcal{A}(1_q, 2_{\bar{q}}, 5_g, 3_Q, 4_{\bar{Q}}) \ + \ (T^{a_5})_{i_1}^{\bar{\imath}_4} \delta_{i_3}^{\bar{\imath}_2} \ \mathcal{A}(1_q, 2_{\bar{q}}, 3_Q, 4_{\bar{Q}}, 5_g) \end{split}$$

- Partials expanded and decomposed as for 2q3g
- Projected on the  $v_0$  tensor structure

| $\mathcal{A}^{(2)[N_f^0]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$ |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--------------|
| $(1^+_q, 2^{\bar{q}}, 3^+_Q, 4^{\bar{Q}}, 5^+_g)$        | 4.500000000     | 23.78050411     | 33.01035431     | -76.65528489    | -305.7123751 |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^-, 4_{\bar{Q}}^+, 5_g^+)$    | 4.500000000     | 23.78050411     | 25.33119767     | -122.8050519    | -400.0885233 |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^+, 4_{\bar{Q}}^-, 5_g^-)$    | 4.500000000     | 23.78050411     | 25.00917906     | 16.91995611     | 579.1225796  |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^-, 4_{\bar{Q}}^+, 5_g^-)$    | 4.500000000     | 23.78050411     | -1009.208812    | -4797.768367    | 4827.790534  |
| $\mathcal{A}^{(2)[N_f^1]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$ |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^+, 4_{\bar{Q}}^-, 5_g^+)$    | 0               | 2.500000000     | 17.25407596     | 48.27686582     | 11.71960460  |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^-, 4_{\bar{Q}}^+, 5_g^+)$    | 0               | 2.500000000     | 17.27259645     | 44.99884204     | -15.14666233 |
| $(1^+_q, 2^{\bar{q}}, 3^+_Q, 4^{\bar{Q}}, 5^g)$          | 0               | 2.500000000     | 3.980556493     | -29.18374008    | -149.0347042 |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^-, 4_{\bar{Q}}^+, 5_g^-)$    | 0               | 2.500000000     | 180.9505853     | 624.1255757     | -2759.824817 |
| $\mathcal{A}^{(2)[N_f^2]}/\mathcal{A}^{(\mathrm{norm})}$ | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ | $\epsilon^0$ |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^+, 4_{\bar{Q}}^-, 5_g^+)$    | 0               | 0               | 0.4444444444    | 3.910872659     | 18.01752271  |
| $(1^+_q, 2^{\bar{q}}, 3^Q, 4^+_{\bar{Q}}, 5^+_g)$        | 0               | 0               | 0.4444444444    | 3.919103985     | 18.09637714  |
| $(1^+_q, 2^{\bar{q}}, 3^+_Q, 4^{\bar{Q}}, 5^g)$          | 0               | 0               | 0.4444444444    | -1.988469328    | -28.36258323 |
| $(1_q^+, 2_{\bar{q}}^-, 3_Q^-, 4_{\bar{Q}}^+, 5_g^-)$    | 0               | 0               | 0.4444444444    | 76.66487683     | 646.7253090  |

 $\mathcal{A}^{(\mathrm{norm})} = \mathcal{A}^{(0)}$ 

Phase space point  $s_{12} = -1, s_{23} = -8/13, s_{34} = -1094/2431,$  $s_{45} = -7/17, s_{51} = -749/7293$ 

# Outlook

# Outlook

#### What's next?

#### • Non-planar topologies

Sub-leading-color contributions, QCD corrections to electroweak production processes, etc.

#### • Beyond pure QCD

- Processes with W/Z bosons, H and jets in the final state
- Towards integrated cross-section and automation of matrix element generation at NNLO

# Outlook

#### What's next?

#### • Non-planar topologies

Sub-leading-color contributions, QCD corrections to electroweak production processes, etc.

#### • Beyond pure QCD

- Processes with W/Z bosons, H and jets in the final state
- Towards integrated cross-section and automation of matrix element generation at NNLO

# Stay tuned!

**Backup Slides** 

#### **Finite Remainders**

Inspired by [Weinzierl '11] [de Freitas, Bern '04]

Recall the basis of tensor structures

$$\begin{aligned} v_n^{\dagger} \cdot v_m &= c_n \delta_m^n, \quad c_0 = 1 \quad \text{and} \quad c_{n>0}(D_s) = \mathcal{O}(\epsilon) \\ M_n^{(k)} &= v^n \cdot M^{(k)} \qquad \left| \qquad v^n \equiv \frac{1}{c_n} v_n^{\dagger} \right. \end{aligned}$$

Infrared poles of a renormalized QCD amplitude  ${\it M}_{\it R}$  have a universal structure

$$M_R^{(2)} = \mathbf{I}^{(2)} M_R^{(0)} + \mathbf{I}^{(1)} M_R^{(1)} + \mathcal{F}^{(2)}$$

where  $\mathbf{I}^{(1)}$  and  $\mathbf{I}^{(2)}$  are Catani operators in color space.

Since  $\mathcal{F}^{(2)}$  is finite and  $c_{n>0} = \mathcal{O}(\epsilon)$ , we have

#### **Tensor Decomposition for Identical Quarks**

Requires an enlarged basis compared to the distinct-quark case.

1. Define the tensors  $\{\tilde{v}_n\}$  as

$$(\tilde{v}_n)_{\kappa_1\kappa_2}^{\lambda_1\lambda_2} = (v_n)_{\kappa_1\kappa_2}^{\lambda_2\lambda_1},$$

2. Decomposition is now over the sets  $\{v_n\}$  and  $\{\tilde{v}_n\}$ . The basis tensors satisfy

$$v_n v^m = \delta_n^m$$
,  $\tilde{v}_n \tilde{v}^m = \delta_n^m$ ,  $v_n \tilde{v}^m = \delta_0^m \delta_{n,0} + \mathcal{O}(\epsilon)$ ,

where the set  $\{\tilde{v}^n\}$  is constructed to be dual to  $\{\tilde{v}_n\}$ 

Consider interference of the tree-level amplitude with the finite remainder, i.e.

$$\left(M^{(0)} - \tilde{M}^{(0)}\right) \cdot \left(\mathcal{F}^{(2)} - \tilde{\mathcal{F}}^{(2)}\right) = \left(M_0^{(0)} - \tilde{M}_0^{(0)}\right) \left(v_0 \cdot \mathcal{F}^{(2)} - \tilde{v}_0 \cdot \tilde{\mathcal{F}}^{(2)}\right) + \mathcal{O}(\epsilon),$$

#### Note

RHS only contains terms that can be computed through the "double trace" prescription

### Derivation of $c_n$

Consider a Clifford algebra in d dimensions. Let  $d_t = Tr(\mathbb{1}_{[d]}) = 2^{d/2}$ . We choose the basis

$$\gamma_{[d]}^{\mu_1\dots\mu_n} = \frac{1}{n!} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \gamma_{[d]}^{\mu_{\sigma(1)}} \dots \gamma_{[d]}^{\mu_{\sigma_n}} ,$$

We require the following traces of antisymmetric  $\gamma$ -matrix chains,

$$\operatorname{Tr}(\gamma_{[d]}^{\mu_1\dots\mu_n}\gamma_{[d]\,\nu_m\dots\nu_1}) = \begin{cases} d_t \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \delta_{\nu_1}^{\mu_\sigma(1)}\dots \delta_{\nu_n}^{\mu_\sigma(n)} & m = n \\ 0 & m \neq n \end{cases},$$

$$c_{n} = v_{n}^{\dagger} \cdot v_{n} = \operatorname{Tr}(\gamma_{[d]} \mu_{n} \dots \mu_{1} \gamma_{[d]}^{\nu_{1} \dots \nu_{n}}) \operatorname{Tr}(\gamma_{[d]}^{\mu_{n} \dots \mu_{1}} \gamma_{[d]} \nu_{1} \dots \nu_{n})$$

$$= d_{t}^{2} \sum_{\sigma \in S_{n}} \sum_{\mu_{1}, \dots, \mu_{n}} \sum_{\tilde{\sigma} \in S_{n}} \sum_{\nu_{1}, \dots, \nu_{n}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\tilde{\sigma}) \delta_{\nu_{1}}^{\mu_{\sigma}(n)} \dots \delta_{\nu_{n}}^{\mu_{\sigma}(1)} \delta_{\mu_{\tilde{\sigma}(n)}}^{\nu_{1}} \dots \delta_{\mu_{\tilde{\sigma}(1)}}^{\nu_{n}})$$

$$= d_{t}^{2} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \left( \sum_{\mu_{1}, \dots, \mu_{n}} \sum_{\tilde{\sigma} \in S_{n}} \operatorname{sgn}(\tilde{\sigma}) \delta_{\mu_{\tilde{\sigma}(n)}}^{\mu_{\sigma}(n)} \dots \delta_{\mu_{\tilde{\sigma}(1)}}^{\mu_{\sigma}(1)} \right)$$

$$= d_{t}^{2} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)^{2} \frac{d!}{(d-n)!} = d_{t}^{2} \frac{d! n!}{(d-n)!}$$

The unitarity approach can be formulated to employ only operations defined in any algebraic field  $\mathbb{F}$  [Peraro'16]. In particular the finite field  $\mathbb{Z}_p$  of all integers modulo a prime number p is useful.

We write the two-loop momenta as

$$\ell_1 = (\ell_{1,[4]}, \vec{\mu}_1), \qquad \ell_2 = (\ell_{2,[4]}, \vec{\mu}_2),$$

We choose an orthonormal basis  $\vec{n}_i$  of the (D-4)-dimensional space

$$\vec{\mu}_1 = r_1 \vec{n}_1, \quad \vec{\mu}_2 = \frac{\mu_{12}}{\mu_{11}} r_1 \vec{n}_1 + r_2 \vec{n}_2 \quad \text{where} \quad r_1 = \sqrt{\mu_{11}}, \quad r_2 = \sqrt{\mu_{22} - \mu_{12}^2/\mu_{11}},$$

with  $\mu_{ij} = \vec{\mu}_i \cdot \vec{\mu}_j$ .

Berends-Giele currents are in general of the form — not F-valued!

$$a_{00} + a_{10}r_1 + a_{01}r_2 + a_{11}r_1r_2,$$

We consider the algebra  $\mathbb{V}$  over the field  $\mathbb{F}$ , with  $\mathbb{V}$  the vector space spanned by the basis  $\{r_0 = 1, r_1, r_2, r_1r_2\}$ 

#### Note

Coefficients of  $r_i$  cancel when amplitude is projected onto tensors  $v_n!$ 

# **Basis of Numerator Functions**

Recall the ansatz for master/surface decomposition:

$$\mathcal{A}(\ell_l) = \sum_{\text{Topologies } \Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} \frac{c_{\Gamma,i} \ m_{\Gamma,i}(\ell_l)}{\prod_{\text{props } j} \rho_j}$$

Loop momenta parameterization:

$$\ell_1 = (\ell_{1[4]}, \vec{\mu}_1), \quad \ell_2 = (\ell_{2[4]}, \vec{\mu}_2),$$
$$\mu_{ij} = \vec{\mu}_i \cdot \vec{\mu}_j$$

### **Basis of Numerator Functions**

Recall the ansatz for master/surface decomposition:

$$\mathcal{A}(\ell_l) = \sum_{\text{Topologies } \Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} \frac{c_{\Gamma,i} \ m_{\Gamma,i}(\ell_l)}{\prod_{\text{props } j} \rho_j}$$

Question:

-

- how numerator functions  $m_{\Gamma,i}(\ell_l)$  depended on  $\vec{\mu}_i$ ?
- can one use the same function basis (including only  $\mu_{ij}$ ) as for pure gluon amplitudes?

Loop momenta parameterization:

$$\ell_1 = (\ell_{1[4]}, \vec{\mu}_1), \quad \ell_2 = (\ell_{2[4]}, \vec{\mu}_2),$$
$$\mu_{ij} = \vec{\mu}_i \cdot \vec{\mu}_j$$

### **Basis of Numerator Functions**

Recall the ansatz for master/surface decomposition:

 $\mathcal{A}(\ell_l) = \sum_{\text{Topologies } \Gamma} \sum_{i \ \in \ M_{\Gamma} \cup S_{\Gamma}} \frac{c_{\Gamma,i} \ m_{\Gamma,i}(\ell_l)}{\prod_{\text{props } j} \rho_j}$ 

Loop momenta parameterization:

 $\ell_1 = (\ell_{1[4]}, \vec{\mu}_1), \quad \ell_2 = (\ell_{2[4]}, \vec{\mu}_2),$  $\mu_{ij} = \vec{\mu}_i \cdot \vec{\mu}_j$ 

#### Question:

- how numerator functions  $m_{\Gamma,i}(\ell_l)$  depended on  $\vec{\mu}_i$ ?
- can one use the same function basis (including only  $\mu_{ij}$ ) as for pure gluon amplitudes?
- The issue was described in the literature for one-loop amplitudes with massive quarks [Fazio, Mastrolia, Mirabella, Bobadilla '14] [Badger, Brønnum-Hansen, Buciuni, O'Connell '17] [Anger, VS '18]
- With external quarks if one chooses a particular embedding of helicity spinors, numerators schematically are

$$\underbrace{\begin{array}{c} \hline \text{Depends only on } \mu_{ij} \\ M_k(\ell_l) = \sum_{n,m} f_k^{\rho_1 \cdots \rho_n, \sigma_1 \cdots \sigma_m} \left(\prod_{i=1}^n \vec{\mu}_{1 \rho_i}\right) \left(\prod_{j=1}^m \vec{\mu}_{2 \sigma_i}\right)$$

 For our definition of helicity amplitudes Lorentz invariance under rotations in (D<sub>s</sub> − 4) dimensions is explicit ⇒ the same basis of numerator functions can be used We construct  $\{v_n\}$  starting from choosing a basis of Clifford algebra in  $(D_s - 4)$ :

$$\overbrace{\gamma_{[D_s-4]}^{\mu_1\cdots\mu_n}}^{\text{anti-symmetrized}} \gamma_{[D_s-4]}^{\mu_1\cdots\mu_n} = \frac{1}{n!} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \gamma_{[D_s-4]}^{\mu_{\sigma(1)}} \cdots \gamma_{[D_s-4]}^{\mu_{\sigma(n)}}$$

Note the following identities ( $k_{\mu}$  — any 4-dim vector):

$$k_{\mu} \left( \gamma_{[D_{s}]}^{\mu} \right)_{a\kappa}^{b\lambda} = k_{\mu} \left( \gamma_{[4]}^{\mu} \right)_{a}^{b} \delta_{\kappa}^{\lambda} \qquad \left| \qquad \left( \gamma_{[D_{s}]}^{\mu} \right)_{a\kappa}^{b_{1}\lambda_{1}} \left( \gamma_{[D_{s}]\mu} \right)_{b_{1}\lambda_{1}}^{b\lambda} = D_{s} \ \delta_{a}^{b} \delta_{\kappa}^{\lambda}$$

$$Particularly useful in HV! (external gluon states)]$$