Scattering amplitudes from (super)conformal symmetry Johannes M. Henn

Max-Planck Institut für Physik, Munich

Based on
JHEP (2018) 82, D. Chicherin and E. Sokatchev
PRL I 2 I (2018) 02 I60I,JMH, D. Chicherin and E. Sokatchev and work in progress with D. Chicherin, E. Sokatchev and S. Zoia

High Precision for Hard Processes conference, Freiburg, October 3, 2018

The team

Dmitrii
Chicherin (MPP)

Emery
Sokatchev
(Annecy)

Simone Zoia
(MPP)

Introduction

- in high energy scattering, sometimes masses may be neglected; symmetry enhanced from Poincaré to conformal symmetry
- broad applications: gauge theories, Yukawa vertices, $\phi^{4} ; \phi^{3}$ in $D=6$ dimensions
- most studies so far deal with correlation functions in position space; what are the consequences for on-shell scattering processes?

\section*{Symmetry for finite `hard functions`}

- application: complicated amplitudes from symmetry?

- two quantum sources of symmetry breaking: soft/collinear and ultraviolet effects

[Figure: L. Dixon, J.Phys
A44 (201I) 45400I]
- this talk: study effect of symmetry on finite `remainder functions`, i.e. hard processes

Plan of the talk

- (Loop-level) conformal Ward identities
- Application: `bootstrapping` 5-particle integrals
- Superconformal symmetry: from 2nd order PDE to Ist order PDE
- First result for a nontrivial hexa-box integral

Conformal symmetry

- important in many areas: string theory,

AdS/CFT, conformal bootstrap, solid state physics, mathematics

- all local (re)scalings of the measure
- Poincaré group,
- dilations, $x^{\mu} \rightarrow \lambda x^{\mu}$
- special conformal boosts $\quad x^{\mu} \rightarrow \frac{x^{\mu}-b^{\mu} x^{2}}{1-2(b \cdot x)+b^{2} x^{2}}$

- powerful symmetry!

Conformal symmetry: momentum space

- off-shell special conformal generator K_{μ} 2nd order in momentum space

$$
K_{\Delta}^{\mu}=-q^{\mu} \square_{q}+2 q^{\nu} \partial_{q^{\nu}} \partial_{q_{\mu}}+2(D-\Delta) \partial_{q_{\mu}}
$$

Conformal dimension Δ

- amputate external legs; on-shell generator \mathbb{K}_{μ}
- in $D=4$, simple spinor-helicity form [Witten 2003]

$$
\sigma_{\alpha \dot{\alpha}}^{\mu} p_{\mu}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}} \quad, \quad \mathbb{K}_{\mu}=2 \tilde{\sigma}_{\mu}^{\dot{\alpha} \alpha} \frac{\partial^{2}}{\partial \lambda^{\alpha} \partial \tilde{\lambda}^{\dot{\alpha}}}
$$

- conformal invariance:

$$
\left(\sum_{i=1}^{n} \mathbb{K}_{i}^{\mu}\right) \mathcal{I}\left(p_{1}, \ldots p_{n}\right)=0
$$

Examples of conformal interactions

- at classical level ϕ^{4}, e.g. six-particle scattering

$$
\begin{aligned}
& \mathcal{I}_{6}=\frac{\delta^{(6)}\left(\sum_{i} p_{i}\right)}{\left(p_{1}+p_{2}+p_{3}\right)^{2}} \\
& \mathbb{K}^{\mu} \mathcal{I}_{6}=\delta^{(6)}\left(\sum_{i} p_{i}\right) \mathbb{K}^{\mu} \frac{1}{\left(p_{1}+p_{2}+p_{3}\right)^{2}}=0
\end{aligned}
$$

- all tree-level gluon amplitudes

$$
\mathbb{K}^{\mu} \mathcal{I}\left(p_{1}, \ldots, p_{n}\right)=0
$$

- Questions:
- what modifications are needed at loop level?
- how powerful are these symmetries?

Holomorphic anomaly

- tree-level MHV amplitude of n gluons

$$
\mathcal{A}_{n, t \operatorname{tree}}^{\mathrm{MHV}}=\frac{(12)^{3} \delta^{(4)}\left(\sum_{i=1}^{n} \lambda_{i} \tilde{\lambda}_{i}\right)}{\langle 23\rangle / 34\rangle \ldots\langle n 1\rangle}, \quad\langle j\rangle=\lambda_{i}^{\pi} \epsilon_{\alpha \beta} \lambda_{j}^{\beta}
$$

- holomorphic anomaly

$$
\frac{\partial}{\partial \tilde{\lambda}^{\dot{\alpha}}} \frac{1}{\langle\lambda \chi\rangle}=2 \pi \tilde{\chi}_{\dot{\alpha}} \delta((\lambda \chi\rangle) \delta([\tilde{\lambda} \tilde{\chi}]) \quad \Longleftarrow \quad \frac{\partial}{\partial \bar{z}} \frac{1}{z}=\pi \delta^{2}(z)
$$

- anomaly of tree amplitudes is localized on collinear configurations of particles (contact terms)
[Beisert et al. 2009]
- studied at level of cuts (discontinuities)
of loop amplitudes
[Beisert et al. 2010]
- here: study directly for loop corrections

6D vertex function ϕ^{3}

[Chicherın and Sokatchev, 2018]

- mixed off-shell/on-shell object

$$
\begin{gathered}
(q+p)^{2} \neq 0 \\
\left(K_{\Delta=2}^{\mu}+\mathbb{K}^{\mu}\right) \frac{p^{2}=0}{\left(q^{2}+i 0\right)\left((q+p)^{2}+i 0\right)}=\langle\phi(q) \phi(-q-p) \mid \phi(p)\rangle_{g} \\
=? ? ? ?
\end{gathered}
$$

6D vertex function ϕ^{3}

[Chicherın and Sokatchev, 20।8]

- mixed off-shell/on-shell object

$$
\begin{gathered}
q^{2} \neq 0 \\
(q+p)^{2} \neq 0 \\
\left(K_{\Delta=2}^{\mu}+\mathbb{K}^{\mu}\right) \frac{p^{2}=0}{\left(q^{2}+i 0\right)\left((q+p)^{2}+i 0\right)}=\langle\phi(q) \phi(-q-p) \mid \phi(p)\rangle_{g} \\
=4 i \pi^{3} p^{\mu} \int_{0}^{1} d \xi \xi(1-\xi) \delta^{(6)}(q+\xi p)
\end{gathered}
$$

- anomaly is contact type and lives on collinear configurations $q \sim p$

Conformal Ward identities

[Chicherin and Sokatchev, 2018]

- contact anomaly localizes loop integration

$$
\int d^{6} k \xrightarrow[q]{p}\left(\mathcal{I}(, \ldots) \underset{\alpha}{\longrightarrow} \longrightarrow \int_{0}^{1} d \xi \xi(1-\xi) \mathcal{I}(q=-\xi p, \ldots)\right.
$$

- system of inhomogeneous 2nd order PDE

Example

- consider 6-D two-mass box
[Chicherin and Sokatchev, 2018] (corresponds to finite part of 4-D box) built from conformal ϕ^{3} vertices
- conformal anomaly (2nd-order inhom. DE) $K^{\mu} \equiv \mathbb{K}_{1}^{\mu}+K_{2}^{\mu}+\mathbb{K}_{3}^{\mu}+K_{4}^{\mu}$

$$
K^{\mu} \mathcal{I}_{(\ell)}=\int_{0}^{1} d \xi A_{(\ell-1)}^{\mu}(\xi)
$$

Bootstrap of multi-loop integrals

- 2nd order DE are difficult to solve, but they are efficient for the bootstrap!
- example: 6-D scalar penta-box — 5-particle scattering: 31-letter
 alphabet [Gehrmann, JMH, Lo Presti, 2015] [Chicherin, JMH, Mitev, 20I8]
— ansatz of weight-5 integrable symbols

$$
\mathcal{S}\left(\mathcal{I}_{5}\right)=\frac{1}{\sqrt{\Delta}} \sum_{i_{1}, \ldots, i_{5}} c_{i_{1} \ldots i_{5}}\left(W_{i_{1}} \otimes \ldots \otimes W_{i_{5}}\right), \quad \Delta=\operatorname{det}\left(p_{i} \cdot p_{j}\right)
$$

- 161 free coefficients; uniquely fixed by just one projection

$$
(n \cdot K) \mathcal{S}\left(\mathcal{I}_{5}\right)=\left(n \cdot p_{1}\right) A_{1}+\left(n \cdot p_{3}\right) A_{3}, \quad\left(n \cdot p_{i}\right)=0 \text { at } i=2,4,5
$$

Summary of this part

- Conformal symmetry: anomalous Ward identities for K_{μ} are 2 nd order DE that are hard to solve
- knowing the function alphabet (and leading singularities) we can bootstrap the answer
Next:
- Superconformal symmetry yields Ist order PDE
- They can be integrated directly! No assumptions about alphabet!

$\mathrm{I}=$ I matter supergraphs with on-shell states

- WZ model in 4D; off-shell super fields

$$
\begin{aligned}
& \Phi(x, \theta)=\phi(x)+\theta^{\alpha} \psi_{\alpha}(x)+(\theta)^{2} F(x), \bar{\Phi}(x, \bar{\theta})=\phi(x)+\bar{\theta}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}}(x)+(\bar{\theta})^{2} \bar{F}(x) \\
& S_{W Z}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} \bar{\Phi} \Phi+\frac{g}{3!} \int d^{4} x d^{2} \theta \Phi^{3}+\frac{g}{3!} \int d^{4} x d^{2} \bar{\theta} \bar{\Phi}^{3}
\end{aligned}
$$

- Classical superconformal symmetry su(2,2|I)
- Two superstates with $\eta \equiv \tilde{\lambda}_{\dot{\alpha}} \bar{\theta}^{\dot{\alpha}}$

$$
\begin{aligned}
& \Psi(p, \eta)=|\psi\rangle+\eta|\phi\rangle \\
& \bar{\Phi}(p, \eta)=|\bar{\phi}\rangle+\eta|\bar{\psi}\rangle
\end{aligned}
$$

helicity classification

- superamplitudes $\mathbf{N}=\mathrm{m}+\mathrm{n}, \mathrm{m} \bar{\Phi}(p, \eta), \mathrm{n} \Psi(p, \eta)$

five-particle $\overline{M H V}$ superamplitudes

- we consider finite amplitude supergraphs

$$
=\delta^{(4)}(P) \underbrace{\delta^{(2)}(Q) \cdot \Xi}_{\text {R-charge }=3} \cdot \mathcal{I}(\{\lambda, \tilde{\lambda}\})
$$

- supercharges $Q_{\alpha}=\sum_{i} \eta_{i} \lambda_{i, \alpha}, \quad \bar{Q}_{\dot{\alpha}}=\sum_{i} \tilde{\lambda}_{i, \dot{\alpha}} \frac{\partial}{\partial n_{i}}$
- unique superinvariant at five points

$$
\bar{Q} \equiv=0 \Rightarrow \quad \Xi_{i j k}=\eta_{i}[j k]+\eta_{j}[k i]+\eta_{k}[i j], \quad[i j]:=\tilde{\lambda}_{\dot{\alpha}} \dot{\epsilon} \dot{\epsilon} \dot{\beta} \tilde{\lambda}_{\dot{\beta}}
$$

\longrightarrow single bosonic function (Feynman integral) I!

- S-susy gives rise to twistor collinearity operator

$$
\left\{\mathbb{S}_{\alpha}, \bar{Z}_{i j k}\right\}=\left(F_{i j k}\right)_{\alpha} \equiv[j k] \frac{\partial}{\partial \lambda_{i}^{\alpha}}+[k i] \frac{\partial}{\partial \lambda_{j}^{\alpha}}+[i j] \frac{\partial}{\partial \lambda_{k}^{\alpha}}
$$

Ward identities for 5-point integrals

- integrals with `magic numerators` [Arkani-Hamed, Bourjaily,
- integrals with magic numerators Cachazo,Trnka, 2010]

- S-variation of \mathcal{A}_{5} anomalous
- PDE for Feynman integral $\mathcal{I}_{5}^{(\ell)}(\{\lambda, \tilde{\lambda}\})$ with collinearity operator

$$
F_{i j k}^{\alpha} \mathcal{I}_{5}^{(\ell)}(\{\lambda, \tilde{\lambda}\})=\sum_{r=1,2,3,4} \lambda_{r}^{\alpha} \int_{0}^{1} d \xi A_{r}^{(\ell-1)}(\xi,\{\lambda, \tilde{\lambda}\})
$$

Solving the DE for the non-planar hexa-box

- five-particle kinematics $\mathcal{I}=\mathcal{I}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
x_{1}=-1-\frac{s_{14}}{s_{15}}, \quad x_{2}=-1-\frac{s_{14}}{s_{45}}, \quad x_{3}=\frac{[12][34]}{[23][41]}, \quad x_{4}=\frac{[23][45]}{[34][52]}
$$

- Ward identity

$$
\begin{aligned}
& \tilde{d} \mathcal{I}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=a_{1} \tilde{d} \log x_{1}+a_{4} \tilde{d} \log x_{2} \\
& +a_{2} \tilde{d} \log \frac{1-x_{1} x_{2}}{\left(1+x_{2}\right)\left(x_{3}-1\right) x_{4}+\left(1+x_{1}\right)\left(x_{3} x_{4}-1\right)} \\
& +a_{3} \tilde{d} \log \frac{1-x_{1} x_{2}}{\left(1+x_{2}\right) x_{3} x_{4}+\left(1+x_{1}\right)\left(x_{3} x_{4}-1\right)}
\end{aligned}
$$

where $\tilde{d}=d x_{1} \partial_{x_{1}}+d x_{2} \partial_{x_{2}} ; a_{k}-$ anomaly of k-th leg, weight- 3 pure functions

- boundary conditions
- $\mathcal{I}\left(x_{1}=-1, x_{2}=-1\right)=0$, i.e. at $s_{14}=0$
- OR: from absence of unphysical cuts

Current status hexa-box integrals

- first result for a nontrivial hexa-box integral
[Chicherin, JMH, Sokatchev, 2018] in agreement with conjectured nonplanar pentagon function alphabet

[Chicherin, JMH, Mitev, 2018]
- IBP reductions [Böhm, Georgoudis, Larsen, Schönemann, Zhang, 20I8]
- differential equations for all hexa-box integrals
[Abreu, Page, Zeng, 20I8]
- differential equations and solution
[Chicherin, Gehrmann, Lo Presti, JMH, Mitev, Wasser, 2018] agrees with result for superconformal integral

Further examples

- six-particle $\overline{M H V}$ supergraphs (single bosonic function)

- six-particle NMHV supergraph (two bosonic functions)

Summary

- Conformal symmetry (2nd order PDE)
- anomalous Ward identity of Feynman diagrams
— efficiently solved using bootstrap assumptions \longrightarrow [see talk at Loops \& Legs 20 I8 by S. Zoia]
- Superconformal symmetry (Ist order PDE)
- 4-D Wess-Zumino model of $\mathrm{N}=1$ matter
-Ward identities easy to solve, no assumptions needed
- Future directions:
— include $\mathrm{N}=$ I gauge sector
- gauge invariance requires sum of diagrams; IR divergences?
— study interplay with beta function

Thank you!

