

Production of Higgs bosons with large transverse momentum

Kirill Kudashkin

Karlsruher Institut für Technologie Institut für Theoretische Teilchenphysik

[ArXiv:1801.08226] and [ArXiv:1712.06549]

in collaboration with K. Melnikov(KIT,TTP), C. Wever(KIT,IKP) and J. Lindert(IPPP,UK)

High Precision for Hard Processes 2018

Higgs bosons with large transverse momentum

- Higgs transverse momentum distribution is used to constrain Higgs couplings
- Few channels for the top-Yukawa coupling
- Boosted Higgs $H \rightarrow b\bar{b}$ channel is competitive (at least complementary) to the $t\bar{t}H$ C.Grojean, et al. 2013
- Boosted Higgs provides an alternative approach to study the top Yukawa
- CMS probed already the high - p_T > 450 GeV region

LO rates for H + j (2j)

Higgs bosons with large transverse momentum

- Higgs transverse momentum distribution is used to constrain Higgs couplings
- Few channels for the top-Yukawa coupling
- Boosted Higgs $H \rightarrow b\bar{b}$ channel is competitive (at least complementary) to the $t\bar{t}H$ C.Grojean, et al. 2013
- Boosted Higgs provides an alternative approach to study the top Yukawa
- CMS probed already the high - p_T > 450 GeV region

Higgs bosons with large transverse momentum

- Higgs transverse momentum distribution is used to constrain Higgs couplings
- Few channels for the top-Yukawa coupling
- Boosted Higgs $H \rightarrow b\bar{b}$ channel is competitive (at least complementary) to the $t\bar{t}H$ C.Grojean, et al. 2013
- Boosted Higgs provides an alternative approach to study the top Yukawa
- CMS probed already the high - p_T > 450 GeV region

$$\sigma^{CMS}_{\it incl}(H
ightarrow bar{b})=74^{+51}_{-49}{
m fb}$$

Since, only the LO cross-section was available (*R.K. Ellis, et al.*, 1988; *U. Baur, et al.*, 1990) it led to huge theoretical uncertainties.

Table 1: Summary of the systematic uncertainties affecting the signal, W and Z+ jets processes. Instances where the uncertainty does not apply are indicated by "—".

Systematic source	W/Z	Н
Integrated luminosity	2.5%	2.5%
Trigger efficiency	4%	4%
Pileup	<1%	<1%
$N_2^{1,\text{DDT}}$ selection efficiency	4.3%	4.3%
Double-b tag	4% (Z)	4%
Jet energy scale / resolution	10/15%	10/15%
Jet mass scale $(p_{\rm T})$	$0.4\%/100 \text{GeV}(p_{\mathrm{T}})$	0.4%/100 GeV (p _T)
Simulation sample size	2-25%	4-20% (ggF)
H $p_{\rm T}$ correction	—	(30% (ggF)
NLO QCD corrections	10%	
NLO EW corrections	15-35%	—
NLO EW W/Z decorrelation	5-15%	—

Anomalous couplings

 BSM physics → deforming the top-Yukawa sector (since, the top-Yukawa coupling is known to about 50 %)

۰

$$\frac{m_t}{v} \bar{t}tH \rightarrow \\ -\kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{\mu\nu,a}H + \kappa_t \frac{m_t}{v} \bar{t}tH$$

Problem:

$$\sigma_{gg
ightarrow H} \sim lpha_s^2 / v^2 (\kappa_g + \kappa_t)^2$$

• Solution: to go beyond inclusive cross-section $\sigma_{gg \rightarrow H+g} \sim \left(\kappa_g + \kappa_t \frac{4m_t^2}{p_{\perp}^2}\right)^2$

Anrea Banfi, et al., 2013; Additional heavy fermion will increase the number of events relative to the SM

Low pt vs High pt

 $p_{T,H}^2 \gg 4m_t^2$

- $\{m_h, s, t, u\} \ll m_t$
- well established algorithmic approach to calculations (Large mass expansion)
- Higgs Effective Field Theory(HEFT) $m_t \rightarrow \infty$

- $m_h < m_t \ll \{s, t, u\}$ hierarchy
- it is not clear what the degrees of freedom are here
- no robust algorithm *until recently*: *K. Melnikov, L. Tancredi, C. Wever,* 2016

NLO corrections to Higgs + Jet

NLO corrections consist of two parts

- Real corrections are known analytically (V. Del Duca, et al., 2001)
- We used *OpenLoops* implementation of real corrections (*F. Cascioli, et al.,2012*)
- It is well understood how to combine these two pieces together (S. Frixione, Z. Kunstz, A. Signer, 1995; S. Catani, M.H. Seymour, 1996)
- Missing analytical results for the virtual amplitude

Virtual corrections

top topologies for $\mathsf{H}+\mathsf{Jet}$

- A four-scale problem: three external (s, p_T, m_h) and one internal (m_t)
- 264 Feynman integrals
- Complicated reduction
- No complete analytic result with the full top mass dependence (*R. Bonciani, et al., 2016*)
- Only numerical results with the full top mass available (*S. P. Jones, et al., 2018*)
- Different approach instead of exact results

Virtual corrections

Hierarchy $m_h < m_t \ll \{s, t, u\}$ suggests \rightarrow Expansion in small parameters $\left(-\frac{m_h^2}{4m_t^2}, -\frac{m_t^2}{s}\right)$ using Differential Equation approach (DEQ). It allows to calculate the virtual amplitude for H + jet production.

Virtual corrections

Hierarchy $m_h < m_t \ll \{s, t, u\}$ suggests \rightarrow Expansion in small parameters $\left(-\frac{m_h^2}{4m_t^2}, -\frac{m_t^2}{s}\right)$ using Differential Equation approach (DEQ). It allows to calculate the virtual amplitude for H + jet production.

Kirill Kudashkin

Amplitudes

Amplitudes for $H \rightarrow ggg \& H \rightarrow q\bar{q}g$

$$\begin{aligned} \mathcal{A}_{H \to ggg} \left(p_1^{a_1}, p_2^{a_2}, p_3^{a_3} \right) &= f^{a_1 a_2 a_3} \, \epsilon_1^{\mu} \, \epsilon_2^{\nu} \, \epsilon_3^{\rho} \, \mathcal{A}_{\mu\nu\rho}^{g}(s, t, u, m_t) \,, \\ \mathcal{A}_{H \to q\bar{q}g}(p_1^j, p_2^k, p_3^a) &= i \, T_{ik}^a \, \epsilon_3^{\mu}(p_3) \, \bar{u}(p_1) \, \mathcal{A}_{\mu}^{q}(s, t, u, m_t) \, v(p_2) \,. \end{aligned}$$

Tensor decomposition(*T. Gehrmann, et al., 2011*)

where $F_j^i = \sum_k R_{jk}^i(s, t, u, m_t; \epsilon) \mathcal{I}_k$ are form factors; a linear combination of rational arguments and scalar integrals

Reduction of scalar integrals

Scalar integrals

$$\mathcal{I}_{\rm top}(a_1, a_2, ..., a_8, a_9) = \int \frac{\mathfrak{D}^d k \mathfrak{D}^d l}{[1]^{a_1} [2]^{a_2} [3]^{a_3} [4]^{a_4} [5]^{a_5} [6]^{a_6} [7]^{a_7} [8]^{a_8} [9]^{a_9}}$$

Integration-by-parts (IBP; K. G. Chetyrkin and F. V. Tkachov, 1981)

$$\int \frac{\partial}{\partial k^{\mu}} (q^{\mu} \prod_{j=1}^{J} \frac{1}{[N]^{a_{j}}}) \mathfrak{D} k \mathfrak{D} l = 0 \qquad q^{\mu} = \{k^{\mu}, p^{\mu}\}$$

via IBP the following mapping is done

$$\{\mathcal{I}_1, \mathcal{I}_2, ..., \mathcal{I}_N\} \rightarrow \{\mathfrak{I}_1, \mathfrak{I}_2, ..., \mathfrak{I}_{\tilde{N}}\}$$

 \mathfrak{I}_i are Master Integrals(MI); 458 Master integrals to compute (crossings included)

Reduction of the scalar integrals

Reduction of the scalar integrals

Differential equations

DEQs

Taking derivatives w.r.t m_t , s, t, u and applying IBPs

$$\partial_k \mathfrak{I}_i(\kappa,\eta,z,\epsilon) = \sum_j A^k_{ij}(\kappa,\eta,z,\epsilon) \, \mathfrak{I}_j(\kappa,\eta,z,\epsilon), \quad k \in \{\kappa,\,\eta,\,z\}.$$

"Normalized" variables

$$\kappa = -\frac{m_h}{4m_t}, \eta = -\frac{m_t}{s}, z = \frac{u}{s}, \qquad 0 < \kappa, \eta \ll 1, z > 0, s < 0$$

Note that both κ, η are numerically small!

Ansatz

Once constructed, DEQs are analyzed. DEQs admit the following solutions

$$\mathfrak{I}_{i}(\kappa,\eta,z,\epsilon) = \sum_{j,k,l,m\in\mathbb{Z},n\in\mathbb{N}} c_{i,j,k,l,m,n}(z,\epsilon) \, \eta^{j-k\epsilon} \kappa^{l/2-m\epsilon} \, \log^{n}(\kappa).$$

Solving DEQs

Inserting Ansatz

By inserting the ansatz into DEQs we simplify the problem significantly. Namely, we mapped DEQs onto algebraic equations

$$\mathfrak{I} \to c_{i,j,k,l,m,n}(z,\epsilon)$$

Combining this with $\kappa, \eta \ll 1$ we get a finite system of linear equations after truncating linear series; in practice it is a very sparse system. This takes care of κ, η DEQs.

z - integration

Ansatz helps, but we still need to integrate z-DEQs

$$\frac{\partial}{\partial z}c(z,\epsilon)=\epsilon M(z)c(z,\epsilon)$$

Integrated in terms of Goncharov's polylogarithms

$$G(\underbrace{l_1,\cdots,l_n}_{\text{weight n}};z) := \int_0^z dz' \frac{G(l_2,\cdots,l_n;z')}{z'-l_1},$$

$$G(;z) = 1, \quad G(\underbrace{0,\cdots,0}_{n \text{ times}};z) = \frac{1}{n!} \log^n(z).$$

Comparison with full result

Simplifications

- 49 letters \rightarrow {-1,0,1} letters (correspond to HPLs)
- Elliptic sectors "dissapear"

Complications

- ${\, \bullet \,}$ it is a different system \rightarrow
- not all mathematical limits are accessible
- not in a canonical form

Determining boundary conditions is difficult.

Massless two-loop master diagrams

$$\mathfrak{I} = M0 + M1 \cdot \eta + ...$$

 $\frac{\partial \mathfrak{I}}{\partial \eta} = (A + B \cdot \eta + ...)\mathfrak{I} + \text{subtopologies}$

Convenient to solve for M0, since they are known (T. Gehrmann, E. Remiddi, 2000 and 2001). In other words, master integrals for Higgs + Jet are master integrals in massless limit (*not always*)

Kirill Kudashkin	HP ²	14 / 20

Master-integrals admits certain singularities

At equation level, we can check that is satisfied

$$\frac{\partial \mathfrak{I}}{\partial \eta} = \dots + \frac{\sum b_j M_j}{p_1 \cdot p_4} + \dots$$

Hence, we should $\sum b_j M_j
ightarrow 0$

Mellin-Barns transformation (M. Czakon and A. Smirnov; V. Smirnov, 1999; J.B Tausk, 1999)

• we can express a sum as a contour integral (*MBtools*)

$$(A_1 + A_2)^{-\nu} = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} d\sigma A_1^{\sigma} A_2^{-\nu-\sigma} \frac{\Gamma(-\sigma)\Gamma(\nu+\sigma)}{\Gamma(\nu)}$$

- we want a particular branch $((m_t^2)^{-\epsilon}, (m_t^2)^{-2\epsilon}, \dots)$
- $\bullet\,$ The main difficulty $\to\,$ Mellin-Barns representation
- $\bullet\,$ Advantage $\rightarrow\,$ many constants could be found simultaneously by pinching

$$\int \frac{\mathfrak{D}^d k \mathfrak{D}^d l}{[1]^{\#+a_1}[2]^{\#+a_2}[3]^{\#+a_3} \cdots}$$

that is putting $a_i \rightarrow 0$ we can find boundaries for subtopologies.

Computing Feynman integral in a kinematic point

It is last resort method. Just few suggestions

- We have to extract a particular branch $((m_t^2)^{-\epsilon},(m_t^2)^{-2\epsilon},\dots)$
- Change of variables
- Bring integrand to a such a form where one can integrate it to hypergeometric functions
- Hypergeometric functions are well understood.
- Look for asymptotics of hypergeometric functions to extract the branch you need

Higgs + Jet at NLO

	$LO_{\rm HEFT}$ [fb]	NLO_{HEFT} [fb]	K	LO [fb]	NLO [fb]	K	
$p_{\perp} >$ 400 GeV	33.8 ^{+44%} _29%	$61.4^{+20\%}_{-19\%}$	1.82	$12.4^{+44\%}_{-29\%}$	$23.6^{+24\%}_{-21\%}$	1.90	
$p_{\perp}\!>450{ m GeV}$	$22.0^{+45\%}_{-29\%}$	$39.9^{+20\%}_{-19\%}$	1.81	$6.75^{+45\%}_{-29\%}$	$12.9^{+24\%}_{-21\%}$	1.91	
$p_{\perp}\!>500{ m GeV}$	$14.7^{+44\%}_{-28\%}$	$26.7^{+20\%}_{-19\%}$	1.81	$3.80^{+45\%}_{-29\%}$	$7.28^{+24\%}_{-21\%}$	1.91	
$p_{\perp}{ m > 1000~GeV}$	$0.628^{+46\%}_{-30\%}$	$1.14^{+21\%}_{-19\%}$	1.81	$0.0417^{+47\%}_{-30\%}$	$0.0797^{+24\%}_{-21\%}$	1.91	
Kirill Kudashkin		H+ let producti			HP ²	2 18/2	0

Summary

- The two loop amplitude has been computed up to the subleading order in the top mass squared
- We combined existing real amplitude with our result, to produce the higgs pT distribution
- We found that the NLO QCD corrections increase the LO prediction by 100 % and the ration of NLO over LO is of O(2) and stable at large values of the transverse momentum
- Scale uncertainty $\pm 20\%$

Outlook

- This method can be used in different calculations related to (HL)-LHC physics
- Since the exact solution is not available, one can combine results from two regions to have a decent differential distribution for any value of pT
- Constraining anomalous couplings $\pounds \sim c_t t \bar{t} h + c_g G^a_{\mu
 u} G^{\mu
 u}_a$

Thank you!

Backup slides

Real corrections with open loops

 $\bullet\,$ Partonic channels contributing to the H + j @NLO

```
q\bar{q} \rightarrow Hgg, gg \rightarrow Hgg, qg \rightarrow Hqg, \dots
```

- Receives contributions from kinematical regions where one parton become soft or collinear to another parton
- This requires a delicate approach of these regions in phase space integral
- *Openloops* algorithm is publicly available program which is capable of dealing with these singular regions in a numerically stable way
- Crucial ingredient is tensor integral reduction performed via expansions in small Gram determinants (*Cascioli et al., 2012* and *Denner et al., 2003 2017*)
- Exact top mass dependence kept throughout for one-loop computations

Pole substructure

S. Catani, M.H. Seymour, 1996

$$(F^{i})_{j}^{(1),\mathrm{UV}} = (F^{i})_{j}^{(1),\mathrm{fin}}, \quad (F^{i})_{j}^{(2),\mathrm{UV}} = I_{1}^{i}(\epsilon)(F^{i})_{j}^{(1),\mathrm{UV}} + (F^{i})_{j}^{(2),\mathrm{fin}}$$

Keep in mind that $(F^i)_j^{(1),UV}$ kept exact through out the calculations. In the end the whole expression is expanded in the Higgs and top mass.

Analytic continuation

C. Anastasiou et al., 2016

The analytic continuation is done in two steps;

Consider analytic continuation from (i) \rightarrow (ii). First we cross t = 0, which would require to do a transformation of the kind: $x \rightarrow 1/x$. $t \rightarrow t + i0$. Next, we cross s = 0, hence a value of $s \rightarrow s + i0$. Apply complex analisys, we can get the following formulas for transformation: $log(-t/s) \rightarrow log(-t/s) - 2i\pi$ and $log(-u/s) \rightarrow log(u/s) - i\pi$