

Experimental prospects for CPV measurements in baryons, and T- and P-odd symmetries

Maurizio Martinelli on behalf the LHCb Collaboration

Towards the Ultimante Precision in Flavour Physics University of Warwick, 16.04.2018

Decays of Interest Current Experimental Status Future Challenges Outlook

Decays of Interest for this Talk

baryon decays

T- and P-odd moments

Measurement

• Comparison of raw asymmetries between $\Lambda_c^+ \rightarrow pK^+K^-$ and $\Lambda_c^+ \rightarrow p\pi^+\pi^-$ decays

$$\Delta A_{CP} = A_{CP}^{\mathrm{raw}}(\Lambda_c^+ \to pK^+K^-) - A_{CP}^{\mathrm{raw}}(\Lambda_c^+ \to p\pi^+\pi^-)$$

- First ever measurement by LHCb using 3 fb⁻¹ data from $\Lambda_b^0 \rightarrow \Lambda_c^+\mu^-$ decays
- ΔA_{CP} Cancels proton and muon reconstruction asymmetry and Λ_b⁰ production asymmetry
- Not enough...

AACP IN AC⁺ baryons - Phase Space Difference Accepted by JHEP

Phase Space

- Decays described by a 5D phase space
- Projections on the Dalitz plot look very different already
- This could generate unwanted asymmetries due to detector reconstruction and selection differences in regions of phase space
- Corrected with reweighing and simulation

$$\Delta A_{CP}^{\mathrm{wgt}} = A_{CP}(\Lambda_c^+ \to pK^+K^-) - A_{CP}^{\mathrm{wgt}}(\Lambda_c^+ \to p\pi^+\pi^-)$$

 $= (0.30 \pm 0.91 \pm 0.61)\%$

Source	Uncertainty $[\%]$
Fit signal model	0.20
Fit background model	
Residual asymmetries	0.10
Limited simulated sample size	0.57
Prompt Λ_c^+	
Total	0.61

P- and T-odd Observables

Sensitivity

- Probe CPV in the interference between spin states of the decay amplitudes
- **Complementarity with typical CP asymmetry measurements** More sensitive in regions with small variations of strong phases

Experimental Technique

- Measure asymmetries on D and \overline{D} decays separately and combine $A_{\hat{T}} = \frac{\Gamma(D \to f, \Phi > 0) - \Gamma(D \to f, \Phi < 0)}{\Gamma(D \to f, \Phi > 0) + \Gamma(D \to f, \Phi < 0)} \qquad \overline{A}_{\hat{T}} = \frac{\Gamma(\overline{D} \to \overline{f}, -\overline{\Phi} > 0) - \Gamma(\overline{D} \to \overline{f}, -\overline{\Phi} < 0)}{\Gamma(\overline{D} \to \overline{f}, -\overline{\Phi} > 0) + \Gamma(\overline{D} \to \overline{f}, -\overline{\Phi} < 0)}$ $a_{CP}^{\hat{T}-\text{odd}} = \frac{1}{2} (A_{\hat{T}} - \overline{A}_{\hat{T}})$ • Initially explored with C_T (triple product) $C_T = \vec{p}_a \cdot \vec{p}_b \times \vec{p}_c$ • Potential improvements from the generalisation of the triple product Φ_{Imn}
 - $\Phi_{lmn} = P_l(\cos\theta_a)P_m(\cos\theta_b)\sin(n\phi)$

More in previous talk by Gauthier

Example: T-odd Observables in \Lambda_b^0 \rightarrow p\pi \cdot \pi^+ \pi^-

Triple Product Observable

$$C_{\hat{T}} = \vec{p}_p \cdot \vec{p}_{\pi_{\text{fast}}} \times \vec{p}_{\pi^+}$$

Measurements

- a_{CP} and a_P
- Integrated

$$a_{CP}^{\hat{T}-\text{odd}} = (1.15 \pm 1.45_{\text{stat}} \pm 0.32_{\text{syst}})\%$$

2 binning schemes - combined p-value=9.8x10⁻⁴ (3.4σ)
 A: 12 regions of phase space
 B: 10 regions of Φ

Advantages

- Multibody decays are specially suited for the study of T-odd observables
- Large branching fractions
- Rich and dense amplitude structure in the phase space
- Small systematics: asymmetry measured as a difference between asymmetries each calculated on the same decay mode
 - Charge-reconstruction asymmetries are null by construction
 - Independent of production asymmetries

Status

So far studied in D⁰→K⁺K⁻π⁺π⁻, D⁰→K⁰sπ⁺π⁻π⁰ (C_T) and D⁰→π⁺π⁻π⁺π⁻ (Energy Test)

Triple Product Asymmetries in $D^0{\longrightarrow} K^+K^-\pi^+\pi^-$

Established Measurement

- Pioneering work by FOCUS
- Optimisation in BaBar
- Further improvements in LHCb

- $D^0 \rightarrow K^+K^-\pi^+\pi^-$ from semileptonic B decays, tagged from muon charge $B \rightarrow D^0\mu^-X$, $D^0 \rightarrow K^+K^-\pi^+\pi^-$

- 3 fb⁻¹ data recorded in 2011+2012

- Largest systematic uncertainty from prompt decays background and flavour misidentification

- Studied asymmetry variation in the phase space

Integrated Analysis

$$A_{\hat{T}} = (-71.8 \pm 4.1_{\text{stat}} \pm 1.3_{\text{syst}}) \times 10^{-3}$$
$$\overline{A}_{\hat{T}} = (-75.5 \pm 4.1_{\text{stat}} \pm 1.2_{\text{syst}}) \times 10^{-3}$$
$$a_{CP}^{\hat{T}-\text{odd}} = (1.8 \pm 2.9_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-3}$$

$\rightarrow D^0 \mu$ -X, $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ R-Pull Pull (a) $D^0(C > 0)$ MdV/c^2 4500 (b) D⁰(C_m<0) $(1.1 \text{ MeV}/c^2)$ LHCb LHCb 3500 3500 3000 2500 Candidates / Candidate 2000 E 2000 1500E 1500 1000 1000 500 1 85 1 85 19 19 $m(K^{+}K^{-}\pi^{+}\pi^{-})$ [GeV/c²] $m(K^{+}K^{-}\pi^{+}\pi^{-})$ [GeV/c²] Pull Pull (c) $\overline{D}^0(-\overline{C}_T > 0)$ MeV/c^2) V/c^2 (d) $\overline{D}^0(-\overline{C}_T < 0)$ LHCb LHCb 400 400 Candidates / (1.1 3000 2500 Candidate 2000 2000 1500 1500 1000 1000 500 50 1.85 1.9 1.85 1.9 $m(K^{+}K^{-}\pi^{+}\pi^{-})$ [GeV/c²] $m(K^{+}K^{-}\pi^{+}\pi^{-})$ [GeV/c²] 3fb⁻¹: Nev~1

JHEP10(2014)005

LHCD

Triple Product Asymmetries in $D^0{\longrightarrow} K^+K^-\pi^+\pi^-$

Binned Analysis

• Bins of phase-space

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=74\%$

• Bins of proper time

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=83\%$

JHEP10(2014)005

LHCD

Phys. Rev. D 95, 091101 (2017)

Self-Conjugate CF Final State

- Precise Tests of CP symmetry with no charge reconstruction asymmetry effects
- Global measurement (N_{ev}~750k)

$$a_{CP}^{T-\text{odd}} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3}$$

Detailed analysis in relevant regions of phase-space shows no CPV

Systematics

- signal and background models

- efficiency vs. C_T
- C_T resolution
- fit bias
- Belle-II sensitivity (50ab⁻¹)
 - integrated: 0.2%
 - single amplitude: 0.7%

Ind	Bin	Resonance	Invariant mass	$A_T(\times 10^{-2})$	$a_{CP}^{T\text{-odd}}(\times 10^{-3})$
nu			requirement (GeV/c^2)		-
	1	$K^0_S \omega$	$0.762 < M_{\pi^+\pi^-\pi^0} < 0.802$	$3.6 \pm 0.5 \pm 0.5$	$-1.7 \pm 3.2 \pm 0.7$
	2	$K^{0}_{S}\eta$	$M_{\pi^+\pi^-\pi^0} < 0.590$	$0.2\pm1.3\pm0.4$	$4.6\pm9.5\pm0.2$
	3	$K^{*-}\rho^+$	$0.790 < M_{K_S^0 \pi^-} < 0.994$	$6.9 \pm 0.3 \ ^{+0.6}_{-0.5}$	$0.0 \pm 2.0^{+1.6}_{-1.4}$
			$0.610 < M_{\pi^+\pi^0} < 0.960$		
	4	$K^{*+}\rho^{-}$	$0.790 < M_{K_S^0 \pi^+} < 0.994$	$22.0 \pm 0.6 \pm 0.6$	$1.2 \pm 4.4^{+0.3}_{-0.4}$
h -1)			$0.610 < M_{\pi^-\pi^0} < 0.960$		
ы.)	5	$K^{*-}\pi^+\pi^0$	$0.790 < M_{K_s^0 \pi^-} < 0.994$	$25.5 \pm 0.7 \pm 0.5$	$-7.1 \pm 5.2^{+1.2}_{-1.3}$
	6	$K^{*+}\pi^-\pi^0$	$0.790 < M_{K_S^0 \pi^+} < 0.994$	$24.5 \pm 1.0 \ ^{+0.7}_{-0.6}$	$-3.9\pm7.3^{+2.4}_{-1.2}$
7%	7	$K^{*0}\pi^+\pi^-$	$0.790 < M_{K_S^0 \pi^0} < 0.994$	$19.7\pm0.8{}^{+0.4}_{-0.5}$	$0.0 \pm 5.6^{+1.1}_{-0.9}$
	8	$K^0_S \rho^+ \pi^-$	$0.610 < M_{\pi^+\pi^0} < 0.960$	$13.2 \pm 0.9 \pm 0.4$	$7.6\pm6.1^{+0.2}_{-0.0}$
	9	Remainder	_	$20.5\pm1.0{}^{+0.5}_{-0.6}$	$1.8 \pm 7.4^{+2.1}_{-5.3}$

$$C_T = \vec{p}_{K^0_S} \cdot \vec{p}_{\pi^+} \times \vec{p}_{\pi^-}$$

Analysis Technique

- Extend to Φ_{lmn}
- Study h⁺h⁻,π⁺π⁻ and h⁺π⁻,h⁻π⁺ configuration to build angles
- Explore phase-space binning such as regions with rapidly changing strong phase can be separated

i.e.: split resonances in the middle

Datasets

 D⁰→π⁺π⁻π⁺π⁻ could also be studied Use momentum to separate pions About x2 more signal

In red the published results black are extrapolations

Decay Mode	Run1	Run1+Run2	Upgrade	Upgradell
	(3/fb)	(9/fb)	(50/fb)	(300/fb)
D ⁰ →K+K-π+π-	0.17M	4.7M	26M	156M
	2.9x10 ⁻³	5.4x10 ⁻⁴	2.4x10 ⁻⁴	1.0x10 ⁻⁴
D ⁰ →π⁺π⁻π⁺π⁻	1.0M	13.5M	150M	900M
	1.2x10 ⁻³	3.3x10 ⁻⁴	1.0x10 ⁻⁴	4.0x10 ⁻⁵

big gain from improved trigger selection in Run2

Upgrade extrapolations assume same efficiency as LHCb

ΔA_{CP} Towards the LHCb Upgrade

- A sensitivity of 0.5x10⁻⁴ can be reached by the end of Run5 (300/fb)
- Nevertheless there are two considerations on the analysis technique
 - 1) It may mask effects of same-sign CP violation
 - 2) It strongly relies on simulation to correct for phase-space difference effects

P- and T-odd Asymmetries

- Other channels can be used to study P- and T-odd asymmetries in charm baryons
 - $\Lambda_c^+ \rightarrow \Lambda^0 K^- \pi^+ \pi^-$
 - $\Lambda_{c}^{+} \rightarrow pK^{0}SK^{+}\pi^{-}$
 - $\Lambda_{c}^{+} \rightarrow ph^{+}h^{-}$
- Similar approaches as those used for Λ_{b^0} analysis
- Efficiency may be reduced from reconstruction of long-lived particles (K⁰s, Λ⁰)

Challenges

Unprecedented Running Conditions

 So far extrapolation based on the ideal scenario of LHCb upgrade performance similar to LHCb

Detector Challenges

Vertexing

Charm physics requires accurate detection of primary vertices to study lifetime

Reconstruction efficiency

- Momentum Acceptance → Multi-body decays characterised by low-momentum particles, these are not hard to reconstruct and to use in your triggers <u>provided you have enough</u> <u>computing power</u>

- Tracking Efficiency = ~20% inefficiency on a 4-body channel

 Homogeneous phase-space Related to the above, you don't want unexpected detector-related asymmetries bias your phase-space

Charged-tracks reconstruction asymmetry

Getting it to the sub-permille level is a non-negligible task, even using large control samples from data

Huge Datasets

Data Collection

- We want to be as efficient as possible, but the we cannot store everything
- Especially in Charm, there may be the need of choosing a trade-off between efficiency and stored information → Experience from Run2 and Upgrade will be fundamental

Data Processing

Should be parallelised through the Grid as much as possible, but resources aren't infinite

Simulation

- Size of simulated samples is the major systematic uncertainty in some LHCb analysis
- We demonstrated that we can do a lot without simulation, but for multi body decays it is fundamental to understand the reconstruction efficiency

- The success of the Upgrade program for Charm will also depend on how faster the simulation will become

Conclusions

Outlook

- Study of charmed baryon decays just started at LHCb New techniques will surely come up to face the challenges of this so far unexplored area
- P- and T-odd observables will maintain their potential
 These variables are in principle independent from charged particles reconstruction
 asymmetries and production asymmetries
 <u>very low systematic uncertainties
 (expected to scale with statistics as evaluated on control samples)

 </u>

No free meal

Outlook

- The unprecedented conditions of the LHCb Upgrade and especially Upgrade-II will create challenges that will require a strenuous effort to be overcome
- Nevertheless, a few years ago it seemed impossible to run a B physics experiment at a hadron collider...

Spares

Triple Product Asymmetries in $D^0 \rightarrow K^0 {}_{S}\Pi^+\Pi^-\Pi^0$

LHCD Spares