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Extracting weak phases in hadronic decays
UT angles extracted from non-leptonic decays

Hadronic matrix elements (MEs) main theoretical difficulty!

Options:
• Lattice: not (yet) feasible for (most) 3-meson MEs
• Other non-perturbative methods, e.g. QCDSR: idem, precision
• Factorization: applicability, power corrections [but see Frings+’15]

• Symmetry methods: limited applicability or precision
New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs
Revisit approximations for precision analyses
Necessary due to apparent smallness of NP

Here: Improve SU(3) analysis
in B → J/ψM



B → J/ψM decays - basics [see also Greg’s talk]

Bd → J/ψK , Bs → J/ψφ :

• Amplitude A = λcsAc + λusAu

• Clearly dominated by Ac [Bigi/Sanda ’81]

• Very clear experimental signature

• Subleading terms:
• Doubly Cabibbo suppressed
• Penguin suppressed

Estimates |λusAu|/|λcsAc | . 10−3

[Boos et al.’03, Li/Mishima ’04, Gronau/Rosner ’09]

The golden modes of B physics: |S | = sinφ

However:

• Quantitative calculation still unfeasible [but see Frings+’15]

• Fantastic precision expected at LHC and Belle II

Subleading contributions must be controlled:
Apparent phase φ̃ = φmix

SM + ∆φmix
NP + ∆φpen (SM+NP)



Factorization in B → J/ψM

B → J/ψM formally factorizes for mc,b →∞. . . [BBNS’00]

. . . but “corrections” are large (O(1)): ΛQCD/(αsmc,b)

B → J/ψM formally factorizes for NC →∞. . . [Buras+’86]

. . . but corrections are large: Ac ∼ C0v0 +C8(v8− a8) [Frings+’15]

Non-factorizable a8, v8 ∼ v0/NC , but C8 ∼ 17C0!

BR(B → J/ψM) remains uncalculable
N.B.: No justification to assume FB→K

FB→π
for SU(3) breaking

Factorization for P/T : [Frings+’15 ]

• A(B → J/ψM) = λcsAc + λusAu, Au “penguin pollution”

Au ∼ p + a, includes penguin and annihilation contributions
No annihilation in Bd → J/ψK , but in Bs → J/ψφ

• p =
∑

j〈J/ψM|Ou
j |B〉 =

∑
k〈J/ψM|Oc

k |B〉+O(Λ/mJ/ψ)

• Estimating 〈J/ψM|Oc
k |B〉 in 1/NC yields ∆φd ,s |p . 1◦



Flavour SU(3) and its breaking
SU(3) flavour symmetry (mu = md = ms). . .

• does not allow to calculate MEs,
but relates them (WE theorem)

• provides a model-independent approach

• allows to determine MEs from data
improves “automatically”!

• includes final state interactions flavour octet

SU(3) breaking. . .

• is sizable, O(20− 30%)

• can systematically be included: tensor (octet) ∼ ms

[Savage’91,Gronau et al.’95,Grinstein/Lebed’96,Hinchliffe/Kaeding’96]

even to arbitrary orders [Grinstein/Lebed’96]

Main questions:
• How large is the SU(3)-expansion parameter?
• Is the number of reduced MEs tractable?



Including |Au| 6= 0 – Penguin Pollution

Au 6= 0 ⇒ S 6= sinφ, Adir
CP 6= 0

Idea: U-spin-related modes constrain Au [Fleischer’99,

Ciuchini et al.’05,’11, Faller/Fleischer/MJ/Mannel’09, . . .]

• Increased relative penguin influence in b → d

• Extract φ = φmix
SM + ∆φmix

NP and ∆φpen

• Issue: Dependence of ∆φpen on SU(3) breaking

Using full SU(3) analysis: [MJ’12]

Determines model-independently SU(3) breaking in Ac : ∼ 20%

Improved extraction of φd(→ ∆φmix
NP ) and ∆φpen

Correction to an already very small effect



Power counting
SU(3) breaking typically O(20− 30%)

Several other suppression mechanisms involved:

• CKM structure (λ, but also Ru ∼ 1/3)

• “Topological suppression”: penguins and annihilation

• 1/NC counting

All these effects should be considered!
Combined power counting in δ ∼ 30% for all effects
Neglect/Constrain only multiply suppressed contributions
Numerically: contribution x ∼ δn → x ≤ δ(2n−1)/2

Yields predictive frameworks with weaker assumptions!

• Uses full set of observables for related decays

• Assumptions can be checked within the analysis
∆ACP, ∆∆S sensitive to SU(3) breaking for penguins



BR measurements and isospin violation [MJ’16]

Affects every BR measurement for Bd ,u decays

Branching ratio measurements require normalization. . .
• B factories: depends on Υ→ B+B− vs. B0B̄0

• LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:
• PDG: assumes r+0 ≡ Γ(Υ→ B+B−)/Γ(Υ→ B0B̄0) ≡ 1
• LHCb: assumes fu ≡ fd , mostly uses rHFAG

+0 = 1.058± 0.024

Both approaches problematic:
• Potential large isospin violation in Υ→ BB [Atwood/Marciano’90]

• Measurements in rHFAG
+0 assume isospin in exclusive decays

This is one thing we want to test!
Avoiding this assumption yields r+0 = 1.035± 0.038
Isospin asymmetry B → J/ψK : AI = −0.006± 0.024

Improvable with existing+coming data, NBB̄ one issue



A word on (strong) meson mixing

Neutral singlets and octets can mix under QCD
Complicates SU(3) analysis

B → J/ψP: η, η′ not necessary to determine φd
B → J/ψV : φ central mode

Meson mixing has to be dealt with

For NC →∞ in the SU(3) limit: degenerate P1,8 and V1,8

Relative size of corrections determines mixing angle
Large mixing does not mean breakdown of SU(3)!

η, η′: large correction to 1/NC from anomaly (singlet)
η, η′ remain approximate SU(3) eigenstates

φ, ω: 1/NC effects small (OZI) → SU(3) breaking dominant
eigenstates according to strangeness content, large mixing

Only the octet part can be controlled by K ∗ and ρ!
Data for ω necessary to control singlet in SU(3)



Annihilation contributions in B → J/ψM
Annihilation is important!

• Suppression unclear for heavy final states
∼ 20% in Ac(B → DD) [MJ/Schacht’15]

• Determines singlet contributions in Bs → J/ψφ

• Affects extraction of η − η′ mixing angle from Bd ,s → J/ψη(′)

• Its neglect in Au correlates e.g. B− → J/ψπ− and
B0 → J/ψK 0 directly

Overly “precise” predictions for CP asymmetries

In B → J/ψM three annihilation contributions:

• Annihilation in Ac , taken into account where appropriate

• Two annihilation contributions in Au, a2 ∼ a1/NC

a2 � 1 → BR(Bs → J/ψπ0, ρ0) ≈ 0
BR(Bs → J/ψρ) ≤ 3.6× 10−6 (90%CL)
No improvement from inclusion (unlike [Ligeti/Robinson’15] )
Only leading contribution included later



SU(3) breaking in B → J/ψP [MJ(’18), preliminary]

Fit to Bd,u,s → J/ψ(K, π) data (including correlations)

• PDG uncertainties applied
Experimental issue: RπK

• Excellent fit (χ2/dof ≤ 1)
Bad fit w/o SU(3) breaking

• SU(3) breaking ≤ 55% allowed
Real SU(3) breaking . 30%

1. SU(3)-breaking parameters perfectly within expectations
2. Strong correlation between Re(δC1) and Re(P):

Cancellations for large P
Assumption on SU(3) breaking affects penguin shift

Remaining weaker approximations:
• SU(3) breaking for Ac , only (but to all orders for P = π,K !)
• EWPs with ∆I = 1, 3/2 neglected in Ac (tiny!)
• A(Bs → J/ψπ0) = 0: testable (challenging)



“Penguins” in B → J/ψP [MJ(’18), preliminary]

Fit to Bd,u,s → J/ψ(K, π) data (including correlations)

• PDG uncertainties applied
Experimental issue: S(B → J/ψπ0)

• Annihilation included
P/T ,A/T ≤ (100, 55, 16)%

• Pen. + Ann. consistent with 0

1. No significant Au anywhere
no motivation for enhanced P,Au

2. φd stable even with enhancements

3. Large CP asymmetries in Bs → J/ψK
possible with cancellations

Exp. progress important!

|P,A/T | φ/◦

100% (PDG) 22.2± 0.9
55% (PDG) 22.1± 0.8
55% (Belle) 22.0± 0.7
16% (PDG) 22.0± 0.8
0 21.7± 0.7



Conclusions → Ultimate Precision
Smallness of NP poses new challenges to CPV interpretation

• SU(3) with breaking enables model-independent analyses

Corrections on top of λ2 suppression → small

Combined power counting of small effects necessary

• High precision → Control penguins and annihilation
Possible for φd B → J/ψP (B → J/ψπ0 + Bs → J/ψK )

• QCD-mixing of mesons complicates B → J/ψV analysis
Nevertheless possible (no SU(3) breakdown), w.i.p.

• Interplay with SU(3) breaking
careful interpretation of BR data necessary

• SU(3)-breaking in penguins difficult to include
presently irrelevant, ultimate numerical impact?

b → cc̄s modes remain “golden”!



Input Values for B → J/ψP Decays: BRs
Observable Value Ref./Comments

1
c−

BR(B− → J/ψK−) (10.27± 0.31)× 10−4

1
c−

BR(B− → J/ψπ−) (0.38± 0.07)× 10−4

BR(B−→J/ψπ−)

BR(B−→J/ψK−)
0.040± 0.004 scaling factor 3.2

0.0386± 0.0013 Excluding BaBar
0.052± 0.004 Excluding LHCb

1
c0
BR(B̄0 → J/ψK̄0) (8.73± 0.32)× 10−4

r BR(B−→J/ψK−)

BR(B̄0→J/ψK̄0)
1.090± 0.045 correlations neglected

1
c0
BR(B̄0 → J/ψπ0) (0.176± 0.016)× 10−4 scaling factor 1.1

fs
fd

BR(B̄s→J/ψKS )

BR(B̄0→J/ψKS )
0.0112± 0.0006 fs/fd = fs/fd |LHCb

BR(B̄s→J/ψKS )

BR(B̄0→J/ψKS )
0.038± 0.009 uses fs/fd = fs/fd |Tev

1
c0
BR(B̄0 → J/ψη) 0.123± 0.019× 10−4

BR(B̄s → J/ψη) (5.1± 1.1)× 10−4

Rs = BR(B̄s→J/ψη′)
BR(B̄s→J/ψη)

0.73± 0.14 ρ(BR,Rs) = −23%

Rs 0.902± 0.084 ρ(Rs ,R) = 1%

R = BR(B̄0→J/ψη′)
BR(B̄0→J/ψη)

1.11± 0.48 ρ(R,Rη) = −73%

fd
fs
Rη = fd

fs

BR(B̄0→J/ψη)

BR(B̄s→J/ψη)
0.072± 0.024 ρ(Rη ,Rs) = 9%



Input Values for B → J/ψP Decays: CP Asymmetries

Observable Value Ref./Comments

ACP(B− → J/ψK−) 0.003± 0.006
ACP(B− → J/ψπ−) 0.001± 0.028
−ηCPSCP(B̄0 → J/ψKS,L) 0.687± 0.019
ACP(B̄0 → J/ψKS,L) 0.016± 0.017 ρ(SCP,ACP) = −15%
SCP(B̄0 → J/ψπ0) −0.94± 0.29

−0.65± 0.22 Belle only
ACP(B̄0 → J/ψπ0) 0.13± 0.13

0.08± 0.17 Belle only
SCP(B̄s → J/ψKS ) −0.08± 0.41
ACP(B̄s → J/ψKS ) 0.28± 0.42

A∆Γ(B̄s → J/ψKS ) 0.49+0.77
−0.65 ± 0.06

fs/fd |LHCb 0.259± 0.015
ys 0.0611± 0.0037
r = f+−/f00 1.027± 0.037

Data in both tables: PDG, HFAG, LHCb, Belle, BaBar



Topological amplitudes in B → J/ψP

Mode C E c P̃2 Au PA E u

B̄0 → J/ψK̄ 0 1 0 1 0 0 0

B̄0 → J/ψπ0 ×
√

2 1 0 1 0 0 -1
B− → J/ψK− 1 0 1 1 0 0
B− → J/ψπ− 1 0 1 1 0 0
B̄s → J/ψK 0 1 0 1 0 0 0

B̄s → J/ψπ0 ×
√

2 0 0 0 0 0 -1

B̄0 → J/ψη8 ×
√

6 -1 0 -1 0 0 -1

B̄0 → J/ψη1 ×
√

3 1
√

3 1 0 3 1

B̄s → J/ψη8 ×
√

6 2 0 2 0 0 -1

B̄s → J/ψη1 ×
√

3 1
√

3 1 0 3 1

Table : Topological amplitudes contributing to B → J/ψP in the SU(3)
limit.



Power counting explicit

Contribution CKM 1/NC Pen. Ann. Π

C 1 1 1 1 1
Ac 1 δ 1 δ δ2

P̃2 Ru δ δ 1 Ru × δ2

P̃4 Ru δ2 δ δ Ru × δ4

Au
1 Ru 1 1 δ2 Ru × δ2

Au
2 Ru δ 1 δ2 Ru × δ3

Table : Relative power counting for the contributions to B → J/ψP
decays with b → d transitions (b → s transitions receive an additional
factor of λ2 in the contributions to Au). There is an additional factor of
δ for the SU(3) corrections to a given amplitude.



Reparametrization invariance and NP sensitivity

A = N (1 + r e iφs e i φw )→ Ñ (1 + r̃ e i φ̃s e i φ̃w )

Reparametrization invariance:
[London et al.’99,Botella et al.’05,Feldmann/MJ/Mannel’08]

Transformation changes weak phase, but not form of amplitude
Sensitivity to (subleading) weak phase lost (presence visible)

• φw = γ in given analyses
• Usually broken by including symmetry partners

Proposals to extract γ in B → J/ψP or B → DD
• However: partially restored when including SU(3) breaking!

[MJ/Schacht’14]

Reason for large range for γ observed in [Gronau et al.’08]

Extracted phase fully dependent on SU(3) treatment

NP phases in A not directly visible
NP tests remain possible
Addition of new terms, e.g. A∆I=1

c additional option



(Absolute) BR measurements for B mesons
BR measurements are important for. . .

• fundamental parameters
|Vub|, |Vcb|, α(φ2), β(φ1), . . .

• NP searches, specifically isospin
asymmetries

AI (X ) =
Γ̄(B0 → X 0

d )− Γ̄(B+ → X+
u )

Γ̄(B0 → X 0
d ) + Γ̄(B+ → X+

u )

AI (J/ΨK ,DsD,K
∗γ . . .)

BR measurements require normalization:

• NBB̄ × f+−,00 for B factories

• LHCb: ratios of BRs, absolute measurements from B factories

Determination of f+−,00 affects all BR measurements



Γ(Υ→ B+B−) = Γ(Υ→ B0B̄0)?

Isospin limit: Γ(Υ→ B+B−) = Γ(Υ→ B0B̄0)
Naively corrections O(%)

However: corrections parametrically enhanced ∼ π/v ≈ 50
Potentially [Atwood/Marciano’90,Kaiser+’02]

r+0 ≡ f+−/f00 = Γ(Υ→ B+B−)/Γ(Υ→ B0B̄0) ∼ 1.2!

Then again. . .

• Smaller enhancement due to meson & vertex structure
[Byers/Eichten,Lepage’90,Dubynskiy+’07]

• Experimentally r+0 ∼ 1.05 [HFAG’14]

Two lessons:
Assumption of r+0 ≡ 1 not justified for precision results!
r+0 − 1 ∼ O(%) ∼ “standard” isospin breaking



Testing isospin in B decays
Simplest case: test Γ+

!
= Γ0 for some decay

Experimentally: observe N+(0) charged (neutral) decays,

Γ+ − Γ0 ∼
1

NBB̄

[
N+

f+−
− N0

f00

]
.

• With assumption on r+0, Γ+ − Γ0 can be determined

• With assumption on Γ+ − Γ0, r+0 can be determined

Precision tests: we have to avoid both assumptions!

Literature:

• PDG: assumes r+0 ≡ 1 for their BR values

• LHCb: uses fu ≡ fd , but takes r+0 from HFAG

• HFAG: r+0 = 1.058± 0.024, assuming Γ+ ≡ Γ0 in 6/7 cases
(specifically Γ(B+ → J/ψK+) ≡ Γ(B0 → J/ψK 0))

Not suited for precision tests!



Measuring r+0 w/o isospin assumption

Avoiding isospin assumptions altogether: [MARK III Coll.’86, BaBar’05]

Compare singly- and doubly-tagged events in the same final state

Ns = 2NBB̄ f00 εs BR(B0 → X 0)

Nd = NBB̄ f00 εd BR(B0 → X 0)2

f00 =
C N2

s

4NdNBB̄

BaBar
= 0.487± 0.010± 0.008 (D∗`ν,part.rec.)

• Could be significantly improved with full BaBar dataset

• Should be done with Belle I data!
Issue: NBB̄ less precise, but comparable precision possible

• Has to be improved by Belle II for precision BR measurements
Off-resonance data below Υ(4S) important



Determination of r+0 for isospin tests
Second option: use Γ+ ≡ Γ0 for inclusive decays [Gonau+’06]

• Isospin-breaking additionally suppressed by 1/m2
b

• r+0 = 1.01± 0.03± 0.09 (X+0
c `ν) [Belle’03]

r+0 = 1.00± 0.03± 0.04 (updated inputs)
Further significant reduction of systematics possible?

f+− + f00
!

= 1?

• Measurement: BR(Υ(4S)→ non−BB̄) ≤ 4% [CLEO’96]

• No non-BB̄ mode observed with BR≥ 10−4 [HFAG]

f+− + f00 = 1 assumed in the following

Main assumption here, needs experimental confirmation!

Averaging the two values for r+0 w/o isospin bias: [MJ’16]

r+0 = 1.035± 0.037

• Only this value that can be used for isospin asymmetries

• Improvable with existing data, Belle II has to do better!

• Implies a ∼ 2% lower bound for BR precision at the moment



Potential for Belle II

1. Belle II can significantly improve the existing measurements
• Singly- vs. doubly-tagged B0 → D∗−(D̄0π−)`+ν
• r+0 from inclusive modes
• Limit on non-BB̄ decay modes of the Υ(4S)

2. Potential of B+,0 → D̄∗0,−(D̄0,−π0)`+ν): [MJ’16]

• Lower reconstruction efficiency
countered by high luminosity

• First direct measurement of f+−
enables test of f+− + f00 ' 1 (main assumption so far)

• Allows for measuring r+0 as a double-ratio
NBB̄ cancels together with other systematic uncertainties

Precision challenge met by Belle II
New measurements to test assumptions
Isospin tests with AI ∼ O(≤ %) become possible!



Implications for B → J/ψK
Present averages have uncertainties around 3% [PDG]

For c0/c+ ≡ r+0 = 1, AI (J/ΨK ) = −0.044± 0.024
Discussed e.g. in [Feldmann+’08,MJ/Mannel’09,MJ’12,Ligeti/Robinson’15]

Additional measurement [BaBar’04] , updated inputs:
r+0BR(B+ → J/ψK+)/BR(B0 → J/ψK 0) = 1.090± 0.045

This yields the averages (accidentally small correlations): [MJ’16]

BR(B+ → J/ψK+) = (9.95± 0.32)× 10−4 [PDG : (10.27± 0.31)]

BR(B0 → J/ψK 0) = (9.08± 0.31)× 10−4 [PDG : (8.73± 0.32)]

AI (J/ΨK ) = −0.009± 0.024 (SM expectation . 1%)

Errors basically unchanged. No sign of an isospin asymmetry!

• Relevant in penguin pollution analyses [MJ’12,(’18),Ligeti/Robinson’15]

Improvement important for precision in β(φ1)

• Note: also AI (J/Ψπ)[
!∼ 20× AI (J/ΨK )] compatible with 0

• Side effect: AI (J/ΨK ) can be used to determine fu/fd at LHCb



Consequences for other decay modes
Possible violation of quasi-isospin sum rule in B̄0,− → D−s D+,0

[LHCb’13, MJ/Schacht’14]

possibly affected by fu/fd , extraction via AI (J/ΨK )

B → K ∗γ:
Isospin asymmetry including production asymmetry:

AI (K
∗γ) = 0.042± 0.032

Smaller shift (r+0 included in one of the measurements)

B → Xsγ:
Expected to be ∼ 0 (as for B → Xc`ν) ,

AI (Xsγ) = −0.001(58)(5)(19) (stat)(syst)(r+0)

r+0 dominating systematic uncertainty!

Determination of Vcb: In principle relevant
However: effect small for Γ+ + Γ0, also |Vcb| ∼

√
BR

Only important for non-averaged determinations


