Penguin pollution in $\phi_{d,s}$ from $b \to c\bar{c}s$ transitions

Martin Jung

Talk at the Workshop
"Towards the Ultimate Precision in Flavour Physics"
17th of April 2018, Warwick, UK

Extracting weak phases in hadronic decays

UT angles extracted from non-leptonic decays

▶ Hadronic matrix elements (MEs) main theoretical difficulty!

Options:

- Lattice: not (yet) feasible for (most) 3-meson MEs
- Other non-perturbative methods, e.g. QCDSR: idem, precision
- Factorization: applicability, power corrections [but see Frings+'15]
- Symmetry methods: limited applicability or precision
- ▶ New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs

- Revisit approximations for precision analyses
- Necessary due to apparent smallness of NP

Here: Improve SU(3) analysis in $B \rightarrow J/\psi M$

$B o J/\psi M$ decays - basics [see also Greg's talk]

$$B_d \to J/\psi K$$
, $B_s \to J/\psi \phi$:

- Amplitude $A = \lambda_{cs}A_c + \lambda_{us}A_u$
- Clearly dominated by A_c [Bigi/Sanda '81]
- Very clear experimental signature
- Subleading terms:
 - Doubly Cabibbo suppressed
 - Penguin suppressed
 - ▶ Estimates $|\lambda_{us}A_u|/|\lambda_{cs}A_c|\lesssim 10^{-3}$ [Boos et al.'03, Li/Mishima '04, Gronau/Rosner '09]

The golden modes of B physics: $|S| = \sin \phi$

However:

- Quantitative calculation still unfeasible [but see Frings+'15]
- Fantastic precision expected at LHC and Belle II
- Subleading contributions must be controlled: Apparent phase $\tilde{\phi} = \phi_{\text{SM}}^{\text{mix}} + \Delta \phi_{\text{NP}}^{\text{mix}} + \Delta \phi_{\text{pen}(\text{SM+NP})}^{\text{mix}}$

Factorization in $B \rightarrow J/\psi M$

- $B o J/\psi M$ formally factorizes for $m_{c,b} o \infty.$. . [BBNS'00]
- lacktriangle ... but "corrections" are large $(\mathcal{O}(1))$: $\Lambda_{\mathrm{QCD}}/(\alpha_s m_{c,b})$
- $B o J/\psi M$ formally factorizes for $N_C o \infty...$ [Buras+'86]
- ▶ ... but corrections are large: $A_c \sim C_0 v_0 + C_8 (v_8 a_8)$ [Frings+'15] Non-factorizable $a_8, v_8 \sim v_0/N_C$, but $C_8 \sim 17C_0$!

 $BR(B o J/\psi M)$ remains uncalculable N.B.: No justification to assume $rac{F_{B o K}}{F_{B o \pi}}$ for SU(3) breaking

Factorization for P/T: [Frings+'15]

- $A(B \to J/\psi M) = \lambda_{cs} A_c + \lambda_{us} A_u$, A_u "penguin pollution"
- ▶ $A_u \sim p + a$, includes penguin and annihilation contributions No annihilation in $B_d \to J/\psi K$, but in $B_s \to J/\psi \phi$
- $p = \sum_{i} \langle J/\psi M | \mathcal{O}_{i}^{u} | B \rangle = \sum_{k} \langle J/\psi M | \mathcal{O}_{k}^{c} | B \rangle + \mathcal{O}(\Lambda/m_{J/\psi})$
- Estimating $\langle J/\psi M|\mathcal{O}_k^c|B\rangle$ in $1/N_C$ yields $\Delta\phi_{d,s}|_p\lesssim 1^\circ$

Flavour SU(3) and its breaking

SU(3) flavour symmetry $(m_u = m_d = m_s)...$

- does not allow to calculate MEs, but relates them (WE theorem)
- provides a model-independent approach
- allows to determine MEs from data
 improves "automatically"!
- includes final state interactions

flavour octet

SU(3) breaking...

- is sizable, $\mathcal{O}(20 30\%)$
- can systematically be included: tensor (octet) $\sim m_s$ [Savage'91,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
 - even to arbitrary orders [Grinstein/Lebed'96]

Main questions:

- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

Including $|A_u| \neq 0$ – Penguin Pollution

$$A_u
eq 0 \Rightarrow S
eq \sin \phi, \ A_{ ext{CP}}^{ ext{dir}}
eq 0$$

Idea: U-spin-related modes constrain A_u [Fleischer'99, Ciuchini et al.'05,'11, Faller/Fleischer/MJ/Mannel'09, . . .]

- Increased relative penguin influence in b o d
- Extract $\phi = \phi_{\mathrm{SM}}^{\mathrm{mix}} + \Delta \phi_{\mathrm{NP}}^{\mathrm{mix}}$ and $\Delta \phi_{\mathrm{pen}}$
- Issue: Dependence of $\Delta\phi_{
 m pen}$ on SU(3) breaking

Using full SU(3) analysis: [MJ'12]

lacktriangle Determines model-independently SU(3) breaking in A_c : $\sim 20\%$

Improved extraction of $\phi_d(o \Delta\phi_{
m NP}^{
m mix})$ and $\Delta\phi_{
m pen}$

Correction to an already very small effect

Power counting

SU(3) breaking typically $\mathcal{O}(20-30\%)$

Several other suppression mechanisms involved:

- CKM structure (λ , but also $R_u \sim 1/3$)
- "Topological suppression": penguins and annihilation
- $1/N_C$ counting

All these effects should be considered!

- Combined power counting in $\delta \sim 30\%$ for all effects
- Neglect/Constrain only multiply suppressed contributions
- Numerically: contribution $x \sim \delta^n \to x < \delta^{(2n-1)/2}$

Yields predictive frameworks with weaker assumptions!

- Uses full set of observables for related decays
- Assumptions can be checked within the analysis
 - $\rightarrow \Delta A_{\rm CP}$, $\Delta \Delta S$ sensitive to SU(3) breaking for penguins

BR measurements and isospin violation [MJ'16]

Affects every BR measurement for $B_{d,u}$ decays

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \to B^+ B^-$ vs. $B^0 \bar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+ B^-)/\Gamma(\Upsilon \to B^0 \bar{B}^0) \equiv 1$
- LHCb: assumes $f_u \equiv f_d$, mostly uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in $r_{+0}^{\rm HFAG}$ assume isospin in exclusive decays
 - This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$
- ▶ Isospin asymmetry $B \rightarrow J/\psi K$: $A_I = -0.006 \pm 0.024$

Improvable with existing+coming data, $N_{R\bar{R}}$ one issue

A word on (strong) meson mixing

Neutral singlets and octets can mix under QCD

Complicates SU(3) analysis

$$B \to J/\psi P$$
: η, η' not necessary to determine ϕ_d

$$B \rightarrow J/\psi V$$
: ϕ central mode

Meson mixing has to be dealt with

For $N_C \to \infty$ in the SU(3) limit: degenerate $P_{1,8}$ and $V_{1,8}$

- Relative size of corrections determines mixing angle
- Large mixing does not mean breakdown of SU(3)!
- η, η' : large correction to $1/N_C$ from anomaly (singlet)
- $\rightarrow \eta, \eta'$ remain approximate SU(3) eigenstates
- ϕ,ω : $1/N_C$ effects small (OZI) \to SU(3) breaking dominant
- eigenstates according to strangeness content, large mixing

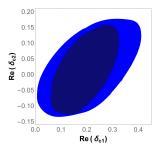
Only the octet part can be controlled by K^* and ρ !

b Data for ω necessary to control singlet in SU(3)

Annihilation contributions in $B \rightarrow J/\psi M$

Annihilation is important!

- Suppression unclear for heavy final states
 - $ightharpoonup \sim 20\%$ in $A_c(B o DD)$ [MJ/Schacht'15]
- Determines singlet contributions in $B_s \to J/\psi \phi$
- Affects extraction of $\eta \eta'$ mixing angle from $B_{d,s} \to J/\psi \eta^{(\prime)}$
- Its neglect in A_u correlates e.g. $B^- \to J/\psi \pi^-$ and $B^0 \to J/\psi K^0$ directly
 - Overly "precise" predictions for CP asymmetries


In $B \to J/\psi M$ three annihilation contributions:

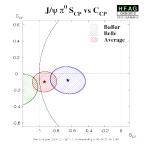
- Annihilation in A_c , taken into account where appropriate
- Two annihilation contributions in A_{II} , $a_2 \sim a_1/N_C$
 - \Rightarrow a₂ ≪ 1 → BR(B_s → J/ψπ⁰, ρ⁰) ≈ 0 BR(B_s → J/ψρ) ≤ 3.6 × 10⁻⁶ (90%CL)
 - No improvement from inclusion (unlike [Ligeti/Robinson'15])
 - Only leading contribution included later

SU(3) breaking in $B o J/\psi P$ [MJ('18), preliminary]

Fit to $B_{d,u,s} \to J/\psi(K,\pi)$ data (including correlations)

- PDG uncertainties applied
 - ightharpoonup Experimental issue: $R_{\pi K}$
- Excellent fit $(\chi^2/\mathrm{dof} \leq 1)$
 - ▶ Bad fit w/o SU(3) breaking
- SU(3) breaking ≤ 55% allowed
 Real SU(3) breaking ≤ 30%

- 1. SU(3)-breaking parameters perfectly within expectations
- 2. Strong correlation between $Re(\delta C_1)$ and Re(P):
 - Cancellations for large P
 - Assumption on SU(3) breaking affects penguin shift


Remaining weaker approximations:

- SU(3) breaking for A_c , only (but to all orders for $P = \pi$, K!)
- EWPs with $\Delta I = 1,3/2$ neglected in A_c (tiny!)
- $A(B_s \to J/\psi \pi^0) = 0$: testable (challenging)

"Penguins" in $B o J/\psi P$ [MJ('18), preliminary]

Fit to $B_{d,u,s} \to J/\psi(K,\pi)$ data (including correlations)

- PDG uncertainties applied
 - **\rightharpoonup** Experimental issue: $S(B o J/\psi \pi^0)$
- Annihilation included
 - P/T, $A/T \le (100, 55, 16)\%$
- Pen. + Ann. consistent with 0

- No significant A_u anywhere
 ▶ no motivation for enhanced P, A_u
- 2. ϕ_d stable even with enhancements
- 3. Large CP asymmetries in $B_s \to J/\psi K$ possible with cancellations \blacktriangleright Exp. progress important!

P,A/T	$\phi/^{\circ}$		
100% (PDG)	22.2 ± 0.9		
55% (PDG)	22.1 ± 0.8		
55% (Belle)	22.0 ± 0.7		
16% (PDG)	22.0 ± 0.8		
0	21.7 ± 0.7		

Conclusions → Ultimate Precision

Smallness of NP poses new challenges to CPV interpretation

- SU(3) with breaking enables model-independent analyses
- Corrections on top of λ^2 suppression \rightarrow small
- ▶ Combined power counting of small effects necessary
- ullet High precision o Control penguins and annihilation
 - ▶ Possible for ϕ_d $B \to J/\psi P$ $(B \to J/\psi \pi^0 + B_s \to J/\psi K)$
- QCD-mixing of mesons complicates $B \to J/\psi V$ analysis
 - Nevertheless possible (no SU(3) breakdown), w.i.p.
- Interplay with SU(3) breaking
 - careful interpretation of BR data necessary
- SU(3)-breaking in penguins difficult to include
 - presently irrelevant, ultimate numerical impact?

 $b \rightarrow c\bar{c}s$ modes remain "golden"!

Input Values for $B \to J/\psi P$ Decays: BRs

	· · ·	
Observable	Value	Ref./Comments
$\frac{1}{c} BR(B^- \to J/\psi K^-)$	$(10.27 \pm 0.31) imes 10^{-4}$	
$\frac{1}{c}$ BR($B^- o J/\psi \pi^-$)	$(0.38\pm0.07)\times10^{-4}$	
$\frac{BR(B^- \to J/\psi \pi^-)}{BR(B^- \to J/\psi K^-)}$	$\boldsymbol{0.040 \pm 0.004}$	scaling factor 3.2
$BR(B \rightarrow J/\psi R)$	0.0386 ± 0.0013	Excluding BaBar
	0.052 ± 0.004	Excluding LHCb
$rac{1}{c_0} \mathrm{BR}(ar{B}^0 o J/\psi ar{K}^0)$	$(8.73 \pm 0.32) imes 10^{-4}$	
$r \stackrel{\text{BR}(B^- \to J/\psi K^-)}{\text{BR}(\bar{B}^0 \to J/\psi \bar{K}^0)}$	$\boldsymbol{1.090 \pm 0.045}$	correlations neglected
$rac{1}{c_0} \mathrm{BR}(ar{B}^0 o J/\psi \pi^0)$	$(0.176 \pm 0.016) imes 10^{-4}$	scaling factor 1.1
$\frac{f_s}{f_d} \frac{BR(\bar{B}_s \to J/\psi K_S)}{BR(\bar{B}^0 \to J/\psi K_S)}$	0.0112 ± 0.0006	$f_s/f_d=f_s/f_d _{\rm LHCb}$
$\frac{\mathrm{BR}(\bar{B}_s \to J/\psi K_S)}{\mathrm{BR}(\bar{B}^0 \to J/\psi K_S)}$	$\boldsymbol{0.038 \pm 0.009}$	uses $f_s/f_d=f_s/f_d _{\mathrm{Tev}}$
$\frac{1}{c_0} \operatorname{BR}(\bar{B}^0 \to J/\psi \eta)$	$0.123 \pm 0.019 \times 10^{-4}$	
$ ilde{\mathrm{BR}}(ar{B}_s o J/\psi\eta)$	$(5.1\pm1.1) imes10^{-4}$	
$R_{s} = \frac{\mathrm{BR}(\bar{B}_{s} \rightarrow J/\psi \eta')}{\mathrm{BR}(\bar{B}_{s} \rightarrow J/\psi \eta)}$	$\boldsymbol{0.73 \pm 0.14}$	$\rho(BR,R_s)=-23\%$
R_s	0.902 ± 0.084	$ ho(R_s,R)=1\%$
$R = rac{\mathrm{BR}(ar{B}^0 ightarrow J/\psi \eta')}{\mathrm{BR}(ar{B}^0 ightarrow J/\psi \eta)}$	1.11 ± 0.48	$ ho(R,R_\eta)=-73\%$
$\frac{f_d}{f_s}R_{\eta} = \frac{f_d}{f_s} \frac{\mathrm{BR}(\bar{B}^0 o J/\psi \eta)}{\mathrm{BR}(\bar{B}_s o J/\psi \eta)}$	0.072 ± 0.024	$ ho(R_\eta,R_s)=9\%$

Input Values for $B \to J/\psi P$ Decays: CP Asymmetries

		D (/C .			
Observable	Value	Ref./Comments			
$A_{\rm CP}(B^- o J/\psi K^-)$	0.003 ± 0.006				
${\cal A}_{ m CP}(B^- o J/\psi\pi^-)$	0.001 ± 0.028				
$-\eta_{\mathrm{CP}}\mathcal{S}_{\mathrm{CP}}(ar{B}^0 o J/\psi K_{S,L})$	$\boldsymbol{0.687 \pm 0.019}$				
${\cal A}_{ m CP}(ar B^0 o J/\psi K_{S,L})$	$\boldsymbol{0.016 \pm 0.017}$	$ ho(\mathcal{S}_{\mathrm{CP}},\mathcal{A}_{\mathrm{CP}}) = -15\%$			
$\mathcal{S}_{\mathrm{CP}}(ar{\mathcal{B}}^0 o J/\psi\pi^0)$	-0.94 ± 0.29				
	-0.65 ± 0.22	Belle only			
${\cal A}_{ m CP}(ar{B}^0 o J/\psi\pi^0)$	0.13 ± 0.13				
	$\boldsymbol{0.08 \pm 0.17}$	Belle only			
$\mathcal{S}_{\mathrm{CP}}(ar{\mathcal{B}}_{S} o J/\psi K_{S})$	-0.08 ± 0.41				
${\cal A}_{ m CP}(ar{B}_s o J/\psi K_S)$	0.28 ± 0.42				
${\cal A}_{\Delta\Gamma}(ar{\cal B}_s o J/\psi K_S)$	$0.49^{+0.77}_{-0.65}\pm0.06$				
$f_s/f_d _{\text{LHCb}}$	0.259 ± 0.015				
y _s	0.0611 ± 0.0037				
$r = f_{+-}/f_{00}$	$\boldsymbol{1.027 \pm 0.037}$				
Data in both tables, DDC HEAC LHCh Palls DaPar					

Data in both tables: PDG, HFAG, LHCb, Belle, BaBar

Topological amplitudes in $B \rightarrow J/\psi P$

Mode	С	Ec	\tilde{P}_2	A ^u	PA	Eu
$ar{B}^0 o J/\psi ar{K}^0$	1	0	1	0	0	0
$ar{B}^0 o J/\psi \pi^0 imes \sqrt{2}$	1	0	1	0	0	-1
$B^- o J/\psi K^-$	1	0	1	1	0	0
$B^- o J/\psi\pi^-$	1	0	1	1	0	0
$ar{B}_s o J/\psi K^0$	1	0	1	0	0	0
$\bar{B}_s o J/\psi \pi^0 imes \sqrt{2}$	0	0	0	0	0	-1
$ar{B}^0 o J/\psi \eta_8 imes \sqrt{6}$	-1	0	-1	0	0	-1
$ar{B}^0 ightarrow J/\psi \eta_1 imes \sqrt{3}$	1	$\sqrt{3}$	1	0	3	1
$\bar{B}_s o J/\psi \eta_8 imes \sqrt{6}$	2	0	2	0	0	-1
$\bar{B}_s \to J/\psi \eta_1 \times \sqrt{3}$	1	$\sqrt{3}$	1	0	3	1

Table : Topological amplitudes contributing to $B \to J/\psi P$ in the SU(3) limit.

Power counting explicit

Contribution	CKM	$1/N_C$	Pen.	Ann.	П
С	1	1	1	1	1
A^c	1	δ	1	δ	δ^2
$ ilde{P}_2$	R_u	δ	δ	1	$R_u imes \delta^2$
$ ilde{P}_4$	R_u	δ^2	δ	δ	$R_u imes \delta^4$
A_1^u	R_u	1	1	δ^2	$R_u imes \delta^2$
A_2^u	R_u	δ	1	δ^2	$R_u \times \delta^3$

Table : Relative power counting for the contributions to $B \to J/\psi P$ decays with $b \to d$ transitions ($b \to s$ transitions receive an additional factor of λ^2 in the contributions to \mathcal{A}_u). There is an additional factor of δ for the SU(3) corrections to a given amplitude.

Reparametrization invariance and NP sensitivity

$$\mathcal{A} = \mathcal{N}(1 + r\,e^{i\phi_s}e^{i\,\phi_w})
ightarrow ilde{\mathcal{N}}(1 + ilde{r}\,e^{i ilde{\phi}_s}e^{i ilde{\phi}_w})$$

Reparametrization invariance:

[London et al.'99,Botella et al.'05,Feldmann/MJ/Mannel'08]

Transformation changes weak phase, but not form of amplitude

- Sensitivity to (subleading) weak phase lost (presence visible)
 - $\phi_{w} = \gamma$ in given analyses
 - Usually broken by including symmetry partners
 - Proposals to extract γ in $B \to J/\psi P$ or $B \to DD$
 - However: partially restored when including SU(3) breaking! [MJ/Schacht'14]
 - \blacktriangleright Reason for large range for γ observed in [Gronau et al.'08]
 - ▶ Extracted phase fully dependent on SU(3) treatment
- \blacktriangleright NP phases in \mathcal{A} not directly visible
- NP tests remain possible
- Addition of new terms, e.g. $A_c^{\Delta I=1}$ additional option

(Absolute) BR measurements for B mesons

- fundamental parameters
 - $|V_{ub}|, |V_{cb}|, \alpha(\phi_2), \beta(\phi_1), \ldots$
- NP searches, specifically isospin asymmetries

$$A_I(X) = \frac{\overline{\Gamma}(B^0 \to X_d^0) - \overline{\Gamma}(B^+ \to X_u^+)}{\overline{\Gamma}(B^0 \to X_d^0) + \overline{\Gamma}(B^+ \to X_u^+)}$$

 $\rightarrow A_I(J/\Psi K, D_s D, K^* \gamma \ldots)$

BR measurements require normalization:

- $N_{B\bar{B}} \times f_{+-.00}$ for B factories
- LHCb: ratios of BRs, absolute measurements from B factories

Determination of $f_{+-.00}$ affects all BR measurements

$$\Gamma(\Upsilon \to B^+ B^-) = \Gamma(\Upsilon \to B^0 \bar{B}^0)$$
?

Isospin limit: $\Gamma(\Upsilon \to B^+B^-) = \Gamma(\Upsilon \to B^0\bar{B}^0)$

▶ Naively corrections $\mathcal{O}(\%)$

However: corrections parametrically enhanced $\sim \pi/\nu \approx 50$

Potentially [Atwood/Marciano'90, Kaiser+'02]

$$r_{+0} \equiv f_{+-}/f_{00} = \Gamma(\Upsilon \rightarrow B^+B^-)/\Gamma(\Upsilon \rightarrow B^0\bar{B}^0) \sim 1.2!$$

Then again...

- Smaller enhancement due to meson & vertex structure [Byers/Eichten,Lepage'90,Dubynskiy+'07]
- Experimentally $r_{+0} \sim 1.05$ [HFAG'14]

Two lessons:

Assumption of $r_{+0} \equiv 1$ not justified for precision results! $r_{+0} - 1 \sim \mathcal{O}(\%) \sim \text{"standard" isospin breaking}$

Testing isospin in B decays

Simplest case: test $\Gamma_+ \stackrel{!}{=} \Gamma_0$ for some decay Experimentally: observe $N_{+(0)}$ charged (neutral) decays,

$$\Gamma_{+} - \Gamma_{0} \sim \frac{1}{N_{B\bar{B}}} \left[\frac{N_{+}}{f_{+-}} - \frac{N_{0}}{f_{00}} \right] .$$

- With assumption on r_{+0} , $\Gamma_{+} \Gamma_{0}$ can be determined
- With assumption on $\Gamma_+ \Gamma_0$, r_{+0} can be determined
- Precision tests: we have to avoid both assumptions!

Literature:

- PDG: assumes $r_{+0} \equiv 1$ for their BR values
- LHCb: uses $f_u \equiv f_d$, but takes r_{+0} from HFAG
- HFAG: $r_{+0}=1.058\pm0.024$, assuming $\Gamma_+\equiv\Gamma_0$ in 6/7 cases (specifically $\Gamma(B^+\to J/\psi K^+)\equiv\Gamma(B^0\to J/\psi K^0)$)
- Not suited for precision tests!

Measuring r_{+0} w/o isospin assumption

Avoiding isospin assumptions altogether: [MARK III Coll.'86, BaBar'05] Compare singly- and doubly-tagged events in the same final state

$$\begin{array}{lcl} N_s & = & 2N_{B\bar{B}} \, f_{00} \, \epsilon_s \, \mathrm{BR}(B^0 \to X^0) \\ N_d & = & N_{B\bar{B}} \, f_{00} \, \epsilon_d \, \mathrm{BR}(B^0 \to X^0)^2 \\ f_{00} & = & \frac{C \, N_s^2}{4N_d \, N_{B\bar{B}}} \, \stackrel{\mathrm{BaBar}}{=} \, 0.487 \pm 0.010 \pm 0.008 \, \, (D^* \ell \nu, \mathrm{part.rec.}) \end{array}$$

- Could be significantly improved with full BaBar dataset
- Should be done with Belle I data!
 - ightharpoonup Issue: $N_{Bar{B}}$ less precise, but comparable precision possible
- Has to be improved by Belle II for precision BR measurements
 - \blacktriangleright Off-resonance data below $\Upsilon(4S)$ important

Determination of r_{+0} for isospin tests

Second option: use $\Gamma_+ \equiv \Gamma_0$ for inclusive decays [Gonau+'06]

- Isospin-breaking additionally suppressed by $1/m_b^2$
- $r_{+0} = 1.01 \pm 0.03 \pm 0.09 (X_c^{+0} \ell \nu)$ [Belle'03]
 - $ightharpoonup r_{+0} = 1.00 \pm 0.03 \pm 0.04$ (updated inputs)

Further significant reduction of systematics possible?

$$f_{+-} + f_{00} \stackrel{!}{=} 1$$
?

- Measurement: $BR(\Upsilon(4S) \to \text{non} B\bar{B}) \le 4\%$ [CLEO'96]
- No non- $B\bar{B}$ mode observed with BR $\geq 10^{-4}$ [HFAG]
- $f_{+-} + f_{00} = 1$ assumed in the following
- ▶ Main assumption here, needs experimental confirmation!

Averaging the two values for r_{+0} w/o isospin bias: [MJ'16]

$$r_{+0} = 1.035 \pm 0.037$$

- Only this value that can be used for isospin asymmetries
- Improvable with existing data, Belle II has to do better!
- Implies a $\sim 2\%$ lower bound for BR precision at the moment

Potential for Belle II

- 1. Belle II can significantly improve the existing measurements
 - Singly- vs. doubly-tagged $B^0 o D^{*-}(\bar D^0\pi^-)\ell^+
 u$
 - *r*₊₀ from inclusive modes
 - Limit on non- $B\bar{B}$ decay modes of the $\Upsilon(4S)$
- 2. Potential of $B^{+,0} \to \bar{D}^{*0,-}(\bar{D}^{0,-}\pi^0)\ell^+\nu)$: [MJ'16]
 - Lower reconstruction efficiency
 - countered by high luminosity
 - First direct measurement of f_{+-} $\stackrel{\smile}{\smile}$ enables test of $f_{+-} + f_{00} \simeq 1$ (main assumption so far)
 - Allows for measuring r_{+0} as a double-ratio \bigcirc
 - \blacktriangleright $N_{B\bar{B}}$ cancels together with other systematic uncertainties

Precision challenge met by Belle II New measurements to test assumptions Isospin tests with $A_I \sim \mathcal{O}(\leq \%)$ become possible!

Implications for $B \to J/\psi K$

Present averages have uncertainties around 3% [PDG]

 \blacktriangleright For $c_0/c_+ \equiv r_{+0} = 1$, $A_I(J/\Psi K) = -0.044 \pm 0.024$ Discussed e.g. in [Feldmann+'08,MJ/Mannel'09,MJ'12,Ligeti/Robinson'15]

Additional measurement [BaBar'04] , updated inputs:
$$r_{+0}{
m BR}(B^+ o J/\psi K^+)/{
m BR}(B^0 o J/\psi K^0)=1.090\pm0.045$$

This yields the averages (accidentally small correlations): [MJ'16]

BR(
$$B^+ \to J/\psi K^+$$
) = $(9.95 \pm 0.32) \times 10^{-4}$ [PDG : (10.27 ± 0.31)]
BR($B^0 \to J/\psi K^0$) = $(9.08 \pm 0.31) \times 10^{-4}$ [PDG : (8.73 ± 0.32)]
 $A_I(J/\psi K)$ = -0.009 ± 0.024 (SM expectation $\leq 1\%$)

- Errors basically unchanged. No sign of an isospin asymmetry!
 - Relevant in penguin pollution analyses [MJ'12,('18),Ligeti/Robinson'15] \blacktriangleright Improvement important for precision in $\beta(\phi_1)$
 - Note: also $A_I(J/\Psi\pi)$ [$\stackrel{!}{\sim}$ 20 × $A_I(J/\Psi K)$] compatible with 0
 - Side effect: $A_I(J/\Psi K)$ can be used to determine f_u/f_d at LHCb

Consequences for other decay modes

Possible violation of quasi-isospin sum rule in $\bar B^{0,-} \to D_s^- D^{+,0}$ [LHCb'13, MJ/Schacht'14]

• possibly affected by f_u/f_d , extraction via $A_I(J/\Psi K)$

$$B \to K^* \gamma$$
:

Isospin asymmetry including production asymmetry:

$$A_I(K^*\gamma) = 0.042 \pm 0.032$$

 \blacktriangleright Smaller shift (r_{+0} included in one of the measurements)

$$B \to X_{\rm s} \gamma$$
:

Expected to be ~ 0 (as for $B \to X_c \ell \nu$),

$$A_I(X_s\gamma) = -0.001(58)(5)(19) \text{ (stat)(syst)}(r_{+0})$$

 $ightharpoonup r_{+0}$ dominating systematic uncertainty!

Determination of V_{cb} : In principle relevant However: effect small for $\Gamma_+ + \Gamma_0$, also $|V_{cb}| \sim \sqrt{BR}$ • Only important for non-averaged determinations