

Mixing-driven CPV with two-body decays: experimental prospects

Marco Gersabeck (The University of Manchester)

TUPIFP, Warwick, 17/4/2018

Mixing-driven CPV with two-body decays: experimental prospects =LHCb (here)

Marco Gersabeck (The University of Manchester)

TUPIFP, Warwick, 17/4/2018

Looking back: CKM2010@Warwick

CP VIOLATION IN CHARM MIXING AT LHCb

Marco Gersabeck (CERN) for the LHCb Collaboration CKM Workshop 2010, Warwick, 9th September 2010

OPEN CHARM CROSS-SECTIONS

- First measurement at $\sqrt{s} = 7 \text{ TeV}$
- Large uncertainties on theoretical extrapolations
- Can measure down to $p_T = 0$
- Access to all open charm hadrons
- Presented here:
 Preliminary cross-sections for D⁰, D^{*+}, D⁺, D_s⁺ using 1.8nb⁻¹
- Work in progress:
 Cross-sections for D⁰, D^{*+}, D⁺, D_s⁺, Λ_c⁺ using 14nb⁻¹

Looking back: CKM2010@Warwick

WHAT, WHEN & HOW?

- Primary goal: making a step forward in precision
- All estimates to be taken with a large pinch of salt

MANCHESTER 1824 The University of Manchester Manchester

- Discovery through combination of measurements
- Mostly two-body

MANCHESTER 1824 The University of Manchester Mixing discovery

- Discovery through combination of measurements
- Mostly two-body

MANCHESTER 1824 The University of Manchester Mixing discovery: WS KTT

PRL 110 (2013) 101802

Using roughly 8.4×10⁶ RS and 3.6×10⁴ WS candidates

$$R(t) \equiv \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_d + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} (\frac{t}{\tau})^2$$

- Rotation of mixing parameters by strong phase difference between CF and DCS amplitudes: x,y → x',y'
- Can get strong phase difference from external input (BESIII) or global fits

Mixing discovery: ycp

- Measure effective lifetime in decays to CP eigenstate
- Compare to CF mode to get nominal T_D

• Without CPV, CP eigenstate overlaps with physical state, hence measure $\Delta\Gamma$ or y

CPV can cause second order deviations of y_{CP} from y

• Very challenging as control of decay-time acceptance of different final states required to very high precision

Probably not first priority due to reduced sensitivity to CPV

Mixing nowadays

- Mixing established
 - $\Rightarrow x \neq 0$ still open question

Mixing-related CP violation

$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$

Mixing:CP violation $x \equiv (m_2 - m_1)/\Gamma$ $|q/p| \neq l$ $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$ $\varphi \equiv \arg(q)$

CP violation: $|q/p| \neq |$ $\phi \equiv \arg(q/p) \neq 0, \pi$

Indirect CP violation: $a_{CP}^{ind} = -a_m y \cos \phi - x \sin \phi$ with $a_m \approx \pm (|q/_P|^2 - 1)$

 $A_{\Gamma} = -a_{CP}$ ind

- Measure asymmetry of effective lifetimes of D⁰ and D
 ⁰ decays to CP eigenstate
 - =0 if physical states are CP eigenstates
 - $\Rightarrow \neq 0$ implies CP violation
- Two methods, two final states, one result
 - \Rightarrow A_{\(\(\K^+K^-)\)} = (-0.30 \pm 0.32 \pm 0.10) × 10^{-3}
 - ⇒ $A_{\Gamma}(\pi^{+}\pi^{-})=(+0.46\pm0.58\pm0.12)\times10^{-3}$

CP violation with DCS

PRL III (2013) 251801

- $D \rightarrow K\pi$ again
- Update with 3 fb⁻¹
- Split by flavour to search for CP violation
 - $\Rightarrow x'^{\pm} = |q/p|^{\pm 1} (x' \cos \Phi \pm y' \sin \Phi)$

 $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$

- Very good sensitivity to |q/p| for small φ
- No indication for CP violation

R_D^+ [10 ⁻³]	$3.545 \pm 0.082 \pm 0.048$
y'^+ [10 ⁻³]	$5.1 \pm 1.2 \pm 0.7$
x'^{2+} [10 ⁻⁵]	$4.9 \pm 6.0 \pm 3.6$
R_D^- [10 ⁻³]	$3.591 \pm 0.081 \pm 0.048$
y'^{-} [10 ⁻³]	$4.5 \pm 1.2 \pm 0.7$
x'^{2-} [10 ⁻⁵]	$6.0 \pm 5.8 \pm 3.6$

New WS KTT

PRD 97 (2018) 031101

- Latest measurement based on 2011-2016 data
 - I80M favoured and 0.7M suppressed decays
- Twice as precise as previous results
- Still no sign for CPV

New WS KTT

• Results

Results $[10^{-3}]$			Corre	lations			
	Direct	violation					
Parameter	Value	R_D^+	y'^+	$(x'^+)^2$	R_D^-	y'^-	$(x'^{-})^{2}$
R_D^+	$3.454 \pm 0.040 \pm 0.020$	1.000	-0.935	0.843	-0.012	-0.003	0.002
$y'^{\overline{+}}$	$5.01 \pm \ 0.64 \ \pm 0.38$		1.000	-0.963	-0.003	0.004	-0.003
$(x'^{+})^{2}$	$0.061 \pm 0.032 \pm 0.019$			1.000	0.002	-0.003	0.003
R_D^-	$3.454 \pm 0.040 \pm 0.020$				1.000	-0.935	0.846
y'^{-}	$5.54 \pm \ 0.64 \ \pm 0.38$					1.000	-0.964
$(x'^{-})^{2}$	$0.016 \pm 0.033 \pm 0.020$						1.000
No direct <i>CP</i> violation							
Parameter	Value	R_D	y'^+	$(x'^{+})^{2}$	y'^-	$(x'^{-})^{2}$	
R_D	$3.454 \pm 0.028 \pm 0.014$	1.000	-0.883	0.745	-0.883	0.749	
y'^+	$5.01 \pm \ 0.48 \ \pm 0.29$		1.000	-0.944	0.758	-0.644	
$(x'^{+})^{2}$	$0.061 \pm 0.026 \pm 0.016$			1.000	-0.642	0.545	
y'^-	$5.54 \pm \ 0.48 \ \pm 0.29$				1.000	-0.946	
$(x'^{-})^{2}$	$0.016 \pm 0.026 \pm 0.016$					1.000	
No CP violation							
Parameter	Value	R_D	y'	x'^2			
R_D	$3.454 \pm 0.028 \pm 0.014$	1.000	-0.942	0.850			
y'	$5.28 \pm \ 0.45 \ \pm 0.27$		1.000	-0.963			
$x^{\prime 2}$	$0.039 \pm 0.023 \pm 0.014$			1.000			

PRD 97 (2018) 031101

Contributions

CP violation overview

- No sign of CP violation
- Update in progress...

Can we do better?

- Superweak constraint
 - Assumes no new decay-specific weak phase
 - ➡ Cuichini et al. (2007)
 - ➡ Kagan, Sokoloff (2009)
- Reducing to 3 parameters
 - \Rightarrow tan $\Phi \approx (I |q/p|)x/y$
- Consider WS measurement with $\Phi{\approx}0$
 - $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Different parametrisation
 - $\Rightarrow \mathbf{x}_{12}, \mathbf{y}_{12}, \mathbf{\Phi}_{12}$
- Current sensitivity already very good

 $\Rightarrow \sigma(\Phi_{12}) = 1.7^{\circ}$

Can we do better?

- Superweak constraint
 - Assumes no new decay-specific weak phase
 - ➡ Cuichini et al. (2007)
 - ➡ Kagan, Sokoloff (2009)
- Reducing to 3 parameters
 - ⇒ tan $\Phi \approx (I |q/p|)x/y$
- Consider WS measurement with $\Phi{\approx}0$
 - $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Different parametrisation
 - \Rightarrow x₁₂, y₁₂, Φ_{12}
- Current sensitivity already very good

 $\Rightarrow \sigma(\Phi_{12}) = 1.7^{\circ}$

Can we do better?

- Superweak constraint
 - Assumes no new decay-specific weak phase
 - ➡ Cuichini et al. (2007)
 - ➡ Kagan, Sokoloff (2009)
- Reducing to 3 parameters
 - \Rightarrow tan $\Phi \approx (I |q/p|) x/y$
- Consider WS measurement with $\Phi{\approx}0$
 - $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Different parametrisation
 - \Rightarrow x₁₂, y₁₂, Φ_{12}
- Current sensitivity already very good

 $\Rightarrow \sigma(\Phi_{12}) = 1.7^{\circ}$

MANCHESTER 1824 The University of Manchester LHCb Upgrades

- Charm CP violation may well be discovered soon
- Will require much more data to
 - Identify underlying sources
 - Challenge SM level in both direct and indirect CPV
- LHCb is the best bet for charm for the foreseeable future
 - Best shot at BSM physics in the up-quark sector

Number games

- Anticipating 10-5 precision
- Requires CF control sample of 5×10¹⁰ candidates
- Requires readiness to estimate systematic effects to this level of precision before we even know their sources
 - ➡ No known show-stoppers, but already sensitive to second-order effects

Table 6.4: Extrapolated signal yields, and statistical precision on indirect CP violation.

Sample (lumi \mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_\Gamma)$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$
Run 1-2 (9 fb $^{-1}$)	Prompt	77M	0.011%	$25\mathrm{M}$	0.02%
Run 1-4 (50 fb ^{-1})	Prompt	1G	0.0031%	$305 \mathrm{M}$	0.0057~%
Run 1-6 (300 fb ^{-1})	Prompt	$5.7\mathrm{G}$	0.0013%	1.8G	0.0024~%

Table 6.1: Extrapolated signal yields, and statistical precision on the mixing and CP-violation parameters, from the analysis of promptly-produced WS $D^{*+} \rightarrow D^0(\rightarrow K^+\pi^-)\pi^+$ decays. Signal yields of promptly-produced RS $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi^+$ decays are typically 250 times larger.

Sample (\mathcal{L})	Yield $(\times 10^6)$	$\sigma(x'^2)$	$\sigma(y')$	$\sigma(A_D)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9fb^{-1})	1.8	1.5×10^{-5}	$2.9 imes 10^{-4}$	0.51%	0.12	10°
Run 1–4 (50fb^{-1})	25	$3.9 imes 10^{-6}$	$7.6 imes 10^{-5}$	0.14%	0.03	4°
Run 1–5 (300fb^{-1})	170	$1.5 imes 10^{-6}$	$2.9 imes 10^{-5}$	0.05%	0.01	1°

Conclusion

- Mixing discovery over 10 years ago
 - → But do D⁰ and \overline{D}^0 mesons oscillate, i.e. is $x \neq 0$?
 - Should answer this very soon
- Now:
 - LHCb in its last year of data taking, BESIII, (and still BaBar, Belle)
- Next:
 - ➡ New facilities: Belle II, LHCb upgrades, ...
 - In terms of two-body charm only LHCb relevant
- Challenges ahead
 - Both technical (sample sizes) and physics-related (yet unknown systematics)
 - Responsibility to make the most of LHCb and ensure we achieve 10⁻⁵ precision in charm