Theoretical status of two-body charm decays

Stefan Schacht Università di Torino & INFN Sezione di Torino

UNIVERSITÀ DEGLI STUDI DI TORINO

Towards the Ultimate Precision in Flavour Physics

Warwick, UK, 16-18 April 2018

based on:

Phys. Rev. Lett. 119, no. 25, 251801 (2017) [arXiv:1708.03572],
Phys. Rev. Lett. 115, no. 25, 251802 (2015) [arXiv:1506.04121],
Phys. Rev. D 92, no. 5, 054036 (2015) [arXiv:1508.00074],
Phys. Rev. D 92, no. 1, 014004 (2015) [arXiv:1503.06759],
Phys. Rev. D 87, no. 1, 014024 (2013) [arXiv:1211.3734]

Recent experimental achievementsStatus of ΔA_{CP} : Waiting for run 2 update $\Delta a_{CP}^{dir} \equiv a_{CP}^{dir}(D^0 \rightarrow K^+K^-) - a_{CP}^{dir}(D^0 \rightarrow \pi^+\pi^-)$ $= -0.00134 \pm 0.00070$, [HFLAV av. 08/17]

including the two 3fb⁻¹ LHCb measurements with different techniques:

 $\Delta A_{CP} = +0.0014 \pm 0.0016 \pm 0.0008 , \qquad [B \to D^0 \mu X, LHCb \ 1405.2797]$ $\Delta A_{CP} = -0.0010 \pm 0.0008 \pm 0.0003 . \qquad [prompt D^*, LHCb \ 1602.03160]$

Recent improvements in New Physics and Observation Channels

$$\begin{split} a_{CP}^{\text{dir}}(D^+ \to \pi^+ \pi^0) &= +0.0231 \pm 0.0124 \pm 0.0023 & \text{[Belle 1712.00619]} \\ A_{CP}(D^0 \to K_S K_S) &= -0.029 \pm 0.052 \pm 0.022 & \text{[LHCb 3tb^{-1} 1508.06087]} \\ A_{CP}(D^0 \to K_S K_S) &= -0.0002 \pm 0.0153 \pm 0.0002 \pm 0.0017 & \text{[Belle 1705.05966]} \end{split}$$

Please improve $A_{CP}(D_s^+ \to K^+ \pi^0) = -0.266 \pm 0.238 \pm 0.009$. [CLEO 0906.3198]

Problems for Theory

Disentangle QCD-Effects from New Physics

Bound state effects of the strong interaction (old physics) or new physics beyond the Standard Model?

$$B^0 = \left(\bar{b}d\right) \qquad D^0 = \left(c\bar{u}\right)$$

Reduced theory toolbox for charm decays

- Charm is not really heavy compared to Λ_{QCD} .
- Perturbative expansion in Λ_{QCD}/m_c will not work.
- We cannot calculate so many things.

CKM structure of SCS D decays

For SCS decays:

$$\mathcal{A} = \lambda_{sd} \mathcal{A}_{sd} - \frac{\lambda_b}{2} \mathcal{A}_b$$

Direct CP asymmetry:

$$a_{CP}^{\text{dir}} \equiv \frac{|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2} = \text{Im}\frac{\lambda_b}{\lambda_{sd}}\text{Im}\frac{\mathcal{A}_b}{\mathcal{A}_{sd}}$$

• $\lambda_q \equiv V_{cq}^* V_{uq}$, q = d, s, b, $\lambda_{sd} \equiv (\lambda_s - \lambda_d)/2$, $\lambda_d + \lambda_s + \lambda_b = 0$.

• $|\mathcal{A}_{sd}|$ fixed from measured branching ratios.

• Need
$$|\mathcal{A}_b|$$
 and phase $\arg\left(\frac{\mathcal{A}_b}{\mathcal{A}_{sd}}\right)$ to predict a_{CP}^{dir} .

$SU(3)_F$ symmetry

Approximate $SU(3)_F$ symmetry of QCD:

Because of $m_{u,d,s} \ll \Lambda_{\text{QCD}}$ the hadronic amplitudes are approximately invariant under unitary rotations of

$$\begin{pmatrix} u \\ d \\ s \end{pmatrix}$$
.

Correlations between various $D \rightarrow K\pi$ decays.

Example: In the limit of exact $SU(3)_F$ symmetry :

$$\mathcal{A}_{sd}(D^0 \to \pi^+ \pi^-) = -\mathcal{A}_{sd}(D^0 \to K^+ K^-).$$

Topological Amplitudes

[Chau 1980,1982; Zeppenfeld 1981, Buras Silvestrini 1998]

 $SU(3)_F$ limit amplitudes contributing to A_{sd} :

Diagrammatic $SU(3)_F$ breaking

- Feynman rule from $H_{SU(3)_F} = (m_s m_d)\overline{ss}$: dot on *s*-quark line. [Gronau 1995]
- Find 14 new topological amplitudes:
 3 diagrams for each *T*, *C*, *E*, *A*; *P*_{break} ≡ *P*_d *P*_s; *P*_{Abreak} ≡ *P*_{Ad} *P*_{As}.

[Brod Grossman Kagan Zupan 2012]

Warwick April 2018 7 / 18

Most general parameterization (excerpt)

Decay d	Т	$T_1^{(1)}$	$T_2^{(1)}$	$T_{3}^{(1)}$	Α	$A_1^{(1)}$	A ₂ ⁽¹⁾	A ₃ ⁽¹⁾	С	$C_1^{(1)}$	$C_{2}^{(1)}$	$C_{3}^{(1)}$	
SCS													
$D^0 \rightarrow K^+ K^-$	1	1	1	0	0	0	0	0	0	0	0	0	
$D^0 \rightarrow \pi^+ \pi^-$	-1	0	0	0	0	0	0	0	0	0	0	0	
$D^0 \rightarrow \bar{K}^0 K^0$	0	0	0	0	0	0	0	0	0	0	0	0	
$D^0 \to \pi^0 \pi^0$	0	0	0	0	0	0	0	0	$-\frac{1}{\sqrt{2}}$	0	0	0	
$D^+ \rightarrow \pi^0 \pi^+$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	0	0	0	$-\frac{1}{\sqrt{2}}$	0	0	0	
$D^+ \rightarrow \bar{K}^0 K^+$	1	1	1	0	-1	0	0	-1	0	0	0	0	
$D_s \rightarrow K^0 \pi^+$	-1	0	0	-1	1	1	1	0	0	0	0	0	
$D_s \to K^+ \pi^0$	0	0	0	0	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	0	0	$-\frac{1}{\sqrt{2}}$	
CF													
$D^0 \rightarrow K^- \pi^+$	1	1	0	0	0	0	0	0	0	0	0	0	
$D^0 \to \bar{K}^0 \pi^0$	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	0	
$D^+ \rightarrow \bar{K}^0 \pi^+$	1	1	0	0	0	0	0	0	1	1	0	0	
$D_s \rightarrow \bar{K}^0 K^+$	0	0	0	0	1	1	0	1	1	1	0	1	
DCS													
$D^0 \rightarrow K^+ \pi^-$	1	0	1	0	0	0	0	0	0	0	0	0	
$D^0 \to K^0 \pi^0$	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	0	
$D^+ \rightarrow K^0 \pi^+$	0	0	0	0	1	0	1	0	1	0	1	0	
$D^+ \to K^+ \pi^0$	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	0	0	0	0	0	
$D_s \rightarrow K^0 K^+$	1	0	1	1	0	0	0	0	1	0	1	1	

Calculate *T* and *A* using $1/N_c$ input. Fit the rest from branching ratio data.

Quantify $SU(3)_F$ -breaking

- Data shows at least O(30%) SU(3)_F breaking in the decay amplitudes.
- The $SU(3)_F$ limit is ruled out by more than 5σ .
- Not possible to determine upper bound just from a fit to data:
 Fit allows also for larger SU(3)_F breaking.
 (And of course even for an inversion of the meaning of parameters.)

Problem of CP Asymmetry Predictions:

• New hadronic quantities appear which cannot be extracted from *B* measurements.

Solution: CP asymmetry sum rules

Strategy: Sum rules among CP asymmetries.

- Build combinations out of several CP asymmetries...
- ... containing only those topological amplitudes in coefficients which can be extracted from the global fit to the branching ratios.

Extent known $SU(3)_F$ limit sum rules

[see, e.g., Grossman Kagan Nir 2006, Hiller Jung Schacht 2012, Grossman Ligeti Robinson 2014]

$$\begin{split} &a_{CP}^{\text{dir}}(D^0 \to K^+ K^-) + a_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-) = 0, \\ &a_{CP}^{\text{dir}}(D^+ \to \bar{K}^0 K^+) + a_{CP}^{\text{dir}}(D_s^+ \to K^0 \pi^+) = 0, \end{split}$$

valid at zeroth order $SU(3)_F$ breaking.

 Include corrections of sum rules due to SU(3)_F breaking in the CKM-leading part of the amplitude...

⇒Sum rules correlating three direct CP asymmetries

I
$$D^0 \to K^+ K^-$$
, $D^0 \to \pi^+ \pi^-$, and $D^0 \to \pi^0 \pi^0$, and

II
$$D^+ \to \overline{K}{}^0K^+$$
 , $D^+_s \to K^0\pi^+$, and $D^+_s \to K^+\pi^0$.

- Note: Still works to zeroth order in SU(3)_F breaking only, as SU(3)_F breaking in CKM-subleading part of amplitudes is not taken into account, e.g. SU(3)_F breaking of P_s + P_d.
- Still: theoretical accuracy of new-physics tests only limited by the assumed size of SU(3)_F breaking, i.e. generically O(30%).
- Great progress compared to spread of past predictions.

Shopping list for NP tests

- Please test sum rules with improved measurements of A_{CP} and \mathcal{B} 's.
- Sum rule II only useful with improved measurement of $A_{CP}(D_s^+ \rightarrow K^+ \pi^0) = -0.266 \pm 0.238 \pm 0.009$ [CLEO 0906.3198] and \mathcal{B} 's.

Sum rules induce nontrivial correlations

Red solid: 95% CL measurement Red dashed: 68% CL measurement

Present data: Light blue: 95% CL from global fit Dark blue dashed: 68% CL from global fit

Future scenario:

assume $\sqrt{50}$ better branching ratios, but $a_{CP}^{\rm dir}(D^0 \to K^+K^-)$ as to-day.

Light green:

95% CL from global fit Dark green dashed: 68% CL from global fit

Two different scientific goals

Data does not show order-of-magnitude enhancement over SM estimate

$$a_{CP}^{\text{dir}} = \text{Im}\frac{\lambda_b}{\lambda_{sd}}\text{Im}\frac{A_b}{A_{sd}} = -6 \cdot 10^{-4} \cdot \text{Im}\frac{A_b}{A_{sd}}.$$

1) Discover charm CP violation.

Need decay mode with large SM prediction for a^{dir}_{CP}.

2) Falsify the SM. ▶Need decay mode with clean SM predictions for a^{dir}_{CP}, or sum rules.

Charm CPV Discovery Modes I: $D^0 \rightarrow K_S K_S$ $\mathcal{A}(D^0 \rightarrow K_S K_S) = \lambda_{sd} \mathcal{A}_{sd} - \frac{\lambda_b}{2} \mathcal{A}_b \qquad |a_{CP}^{dir}| \le 1.1\%$ @95% CL

including $1/N_c$ color counting hierarchies: $|a_{CP}^{dir}| \le 0.6\%$.

Special Feature 1

• In the SU(3)_F limit $\mathcal{A}_{sd} = 0$ while $\mathcal{A}_b \neq 0$.

Suppressed $\mathcal{B}(D^0 \to K_S K_S)$, enhanced $a_{CP}^{\text{dir}} \propto \text{Im}(A_b/A_{sd})$.

Special Feature 2

• a_{CP}^{dir} from sizable tree level exchange diagrams.

• Even if penguin topology vanishes!

Advantage compared to $a_{CP}^{\text{dir}}(D^0 \to \pi^+\pi^-)$ and $a_{CP}^{\text{dir}}(D^0 \to K^+K^-)$, i.e., ΔA_{CP} .

Charm CPV Discovery Modes II: $D^0 \rightarrow K_S K^{0*}$

Additional features compared to $D^0 \rightarrow K_S K_S$ [first steps: LHCb 1509.06628]

Probably best charm CP discovery channel.

Special Feature 3

• Prompt decay $K^{0*} \to K^+ \pi^-$ with charged tracks helps in the experiment, since K_S lives too long.

Special Feature 4

• In Dalitz plot analysis one can explore the region of $K^+\pi^-$ invariant mass a bit away from the K^{*0} resonance to hunt for favorable strong phases which maximise a_{CP}^{dir} .

Special Feature 5

• No flavor tagging needed, essentially undiluted untagged CP asym.:

$$a_{CP}^{\operatorname{dir}}(\overline{D}^{\,\prime} \to K_S K^{*0}) \approx a_{CP}^{\operatorname{dir}}(D^0 \to K_S K^{0*}) \leq 0.3\%$$

Interesting new routes to a better understanding of QCD relevant for Charm

- First conceptual steps on the lattice: [Hansen Sharpe 1204.0826]
 Generalization of Lellouch-Lüscher formula.
 Possible application to charm: long-term endeavor.
- Applying QCD light-cone sum rules + quark-hadron duality. \Rightarrow Prediction: $|\Delta a_{CP}^{dir}| < 0.00020 \pm 0.00003$ [Khodjamirian Petrov 1706.07780]

Conclusion: Goals of the Charm CP Physics Program

1) Discover charm CP violation.

Need decay mode with large SM prediction for a^{dir}_{CP}.

Discovery modes: $D^0 \to K_S K_S$ and $D^0 \to K_S K^{0*}$. $a_{CP}^{\text{dir}}(D^0 \to K_S K_S) \le 1.1\%$ $a_{CP}^{\text{dir}}(\overline{D} \to K_S K^{*0}) \le 0.3\%$

- $a_{CP}^{dir}(D^0 \rightarrow K_S K_S)$ dominated by tree level exchange diagrams: No penguins needed \Rightarrow No loop suppression.
- No flavor tagging required for $D^0 \to K_S K^{0*}$.

2) Falsify the SM.

Need decay mode with clean SM predictions for a_{CP}^{dir} , or sum rules.

"null test" mode
$$A_{CP}(D^+ \to \pi^+\pi^0)$$
,
1) Sum rule $D^0 \to K^+K^-$, $D^0 \to \pi^+\pi^-$, $D^0 \to \pi^0\pi^0$,
2) Sum rule $D^+ \to \overline{K}{}^0K^+$, $D_s^+ \to K^0\pi^+$, $D_s^+ \to K^+\pi^0$.
an Schacht Warwick April 2018 18/18

BACK-UP

't Hooft 1974: Study $SU(3)_C \Rightarrow SU(N_c)_C$

 N_c = number of colors.

- Asymptotic freedom \Rightarrow Expansion in $\alpha_s(\mu)$ works for high energies.
- Breaks down for low energy QCD \Rightarrow Nonperturbative regime.
- Consider $N_c \rightarrow \infty$ and expand in $1/N_c$.

•
$$g = g_0 / \sqrt{N_c}, g^2 \sim 1/N_c$$
.

$1/N_c$ power counting for charm

Corrections to **T** and **A** diagrams $1/N_c^2$ suppressed

 $\begin{array}{ll} \text{same order in } 1/N_c & 1/N_c^2\text{-suppressed.} \\ \Rightarrow \text{ fit } E. & \Rightarrow \text{ fit } \delta_T \leq 15\% \text{ in } T = T^{\text{fac}}(1+\delta_T), \\ & \text{analogous:} \Rightarrow \text{ fit } \delta_A \leq 15\% \text{ in } A = A^{\text{fac}}(1+\delta_A) \\ \text{for example:} & T(D^0 \to K^+K^-) = \frac{G_F}{\sqrt{2}}a_1f_K(m_D^2 - m_K^2)F^{DK}(m_K^2)\left(1 + O(1/N_c^2)\right) \\ & A(D_s^+ \to K^0\pi^+) = \frac{G_F}{\sqrt{2}}a_1f_{D_s}(m_K^2 - m_\pi^2)F^{K\pi}(m_{D_s}^2)\left(1 + O(1/N_c^2)\right) \end{array}$

Extract parameters from branching ratio data

- Perfect fit to branching ratios: $\chi^2 \sim 0$: under-determined problem.
- But: Nontrivial result due to many parameter constraints: Permit only up to 50% SU(3)_F-breaking.
- Broad and Multiple Fit Solutions

Relative Importance of Diagrams: Likelihood Ratio Tests

Hypothesis	Significance of rejection				
$P_{\text{break}} = 0$	0.7σ				
$P_{\text{break}} = E_i^{(1)} = C_i^{(1)} = 0 \ \forall i$	$> 5\sigma$				
$E_i^{(1)} = 0 \forall i$	3.0σ				
$E = E_i^{(1)} = 0 \forall i$	$> 5\sigma$				
$C_i^{(1)} = 0 \forall i$	4.3σ				
$C = C_i^{(1)} = 0 \forall i$	$> 5\sigma$				

• Clear need for SU(3)_F breaking.

• P_{break} allowed to be zero at 0.7σ .

Probe of DCS amplitudes

Asymmetry $D^0 \rightarrow K_{S,L} \pi^0$

$$R(D^0) \equiv \frac{\mathcal{B}(D^0 \to K_S \pi^0) - \mathcal{B}(D^0 \to K_L \pi^0)}{\mathcal{B}(D^0 \to K_S \pi^0) + \mathcal{B}(D^0 \to K_L \pi^0)}$$

Blue: 1, 2, 3 σ . Black: SU(3)_F-limit. [Bigi Yamamoto 1994, Rosner 2006, Gao 2006]

 $\mathcal{B}(D_{s}^{+} \to K_{L}K^{+}) \text{ not measured yet.}$ Prediction: $\mathcal{B}(D_{s}^{+} \to K_{L}K^{+}) = 0.012^{+0.007}_{-0.002} \text{ at } 3\sigma$ $R(D_{s}^{+}) \equiv \frac{\mathcal{B}(D_{s}^{+} \to K_{S}K^{+}) - \mathcal{B}(D_{s}^{+} \to K_{L}K^{+})}{\mathcal{B}(D_{s}^{+} \to K_{S}K^{+}) + \mathcal{B}(D_{s}^{+} \to K_{L}K^{+})}$ Black: QCDF@1\sigma [Gao 2014]

Implications of sum rule I

Black dashed: $SU(3)_F$ limit Red solid: 95% CL measurement Red dashed: 68% CL measurement Present data: Light blue: 95% CL from global fit Dark blue dashed:

68% CL from global fit Future scenario:

assume $\sqrt{50}$ better branching ratios, but $a_{CP}^{\rm dir}(D^0 \to K^+K^-)$ as to-day.

Light green:

95% CL from global fit Dark green dashed: 68% CL from global fit

Implications of sum rule II

Use measured values of $D^+ \to \overline{K}{}^0K^+$ and $D_s^+ \to K^0\pi^+$ to predict $a_{CP}^{dir}(D_s^+ \to K^+\pi^0)$:

- Blue: prediction from $a_{CP}^{\text{dir}}(D^+ \to \overline{K}{}^0K^+)$, $a_{CP}^{\text{dir}}(D_s^+ \to K^0\pi^+)$, and global fit to branching ratios.
- Black: same as blue, but without $1/N_c$ constraints.
- Red: measurement. Dashed: 1σ , solid: 2σ , dot-dashed: 3σ .

Not shown: error from $SU(3)_F$ breaking in $P_s + P_d$.

 \Rightarrow yet another successful postdiction.

Implications of sum rule II, future scenario

But: Assuming better measurements of the branching ratios by a factor of $\sqrt{50}$ changes the picture:

Green: prediction from $a_{CP}^{dir}(D^+ \to \overline{K}{}^0K^+)$, $a_{CP}^{dir}(D_s^+ \to K^0\pi^+)$, and global fit to branching ratios. Magenta: same as blue, but without $1/N_c$ constraints. Red: measurement. Dotted: 1σ , solid: 2σ , dot-dashed: 3σ . Not shown: error from SU(3)_F breaking in $P_s + P_d$.

Stefan Schacht

Warwick April 2018 28