Towards the Ultimate Precision in Flavour Physics

B decays to rare leptonic and semileptonic final states

• Flavour physics always at the frontier of testing the SM and looking for BSM

Key themes now: precision, CP, lepton nonuniversality ... and K, D

Community eagerly awaiting for new results, particularly LU tests

Conclusions

Joaquim Matias

- Crucial to follow different theoretical treatments (SFF or FF) and FF LCSR approaches.
 - Form Factors: KMPW $\mathcal{O}(\alpha_s)$ corrections, BSZ test error assessment, i.e., $f_{\mathcal{U}}^{\mathcal{U}}$.
 - \rightarrow Optimized observables in SFF more robust against changes in FF than non-optimized ones.
 - Non factorizable contributions: theory and experimental approach.

 \rightarrow Data seems to point to absence of a relevant q^2 dependent in C_9 besides known ones.

- R_{K^*} very sensitive to hadronic uncertainties in presence of NP in particular to changes in FF.
- R_K excellent probe in SM but also in NP due to simple structure.
- Q_5 unique capacity to disentangle $C_9 = -C_{10}$ and C_9 , but also size of possible hadronic contributions.
- An experimental improvement on R_K error by 40% assuming same cv:

Universitat Autònoma de Barcelona

A fit with only LFUV will move above 5σ and near 7σ of complete fit.

SUMMARY: PLEASE PROVIDE R_K and Q_5 !!!!!!!!!!

Very large sample of b->s(d)ll decays will become available in (near) future

Observable	Run 1 result 8fb^{-1} 50	$50{\rm fb}^{-1}$ $300{\rm fb}^{-1}$	Observable $(1.1 < q^2 < 6.0 \text{GeV}^2/c^4)$	Run 1 result	$8{\rm fb}^{-1}$	$50{ m fb}^{-1}$	$300{\rm fb}^{-1}$
Yield $B^0 \rightarrow K^{*0} \mu^+ \mu^-$	$2398 \pm 57 \ [74] \ 9175$	70480 435393	Yield $B^+ \rightarrow K e^+ e^-$	254 ± 29	950	7500	45000
Yield $B_s^0 \rightarrow \phi \mu^+ \mu^-$	432 ± 24 [75] 1653	12697 78436	Yield $B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14	400	3200	20000
Yield $B^+ \rightarrow K^+ \mu^+ \mu^-$	4746 ± 81 [83] 18159 13	39491 861709	Yield $B_s^0 \rightarrow \phi e^+ e^-$	-	75	560	3500
Yield $B^+ \rightarrow \pi^+ \mu^+ \mu^-$	93 ± 12 [84] 355	2725 16831	Yield $\Lambda_{h}^{0} \rightarrow pKe^{+}e^{-}$	-	200	1500	9400
Yield $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$	373 ± 25 [85] 1426	10957 67688	Yield $B^+ \rightarrow \pi^+ e^+ e^-$	-	_	300	1800

• Belle-II will very soon enter the game (could improve precision on BR of normalisation modes used by LHCb?)

R. Silva Coutinho (UZH) -TUPIFP Workshop

What about **angular observables**? \bullet

In particular, no "double-ratio" tricky is possible - which requires an even better control of the electron mode systematics

Tight but healthy competition ahead

How is the interplay between LHCb/Belle-II?

• Life at Belle-II easier with electrons

18

 Analyses must drive the design of the LHCb Phase-II upgrade ECAL

R. Silva Coutinho (UZH) -TUPIFP Workshop

- Long-standing debate on whether not full control of charm-loops could explain the present anomalies
- between • Sinergy theory and experiments, but need more data
- New ideas and continuous progress

Charm loop: dangerous or harmless?

A clear-cut non-perturbative calculation is not available yet

Combinations of QCDF, LCSR, analiticity and unitarity point to a moderate effect with a flat q^2 dependence in the region of interest. Yet their ability to fully describe c-loop rescattering is guestionable

Future data could be able to pin down hadronic contributions with no short-distance counterparts (all but ΔC_{τ} and ΔC_{\circ})

LFUV signals are not affected, but their interpretation may be Towards the ultimate precision in flavour physics - 17 April 2018 - Warwick (UK) Marco Ciuchini Page 17

[A. Mauri et al, to appear in arXiv tomorrow]

Chapter [iv]: simultaneous unbinned analysis of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ and $B^0 \rightarrow K^{*0}e^+e^-$

- All nuisance parameters are shared between electron and muons, i.e. CKM and (non) local hadronic
- Extended maximum-likelihood fit, i.e. includes RK* information

R. Silva Coutinho (UZH) -TUPIFP Workshop

P.Owen

• Given hints of LU violation taus are attracting significant interest, particularly in LF violating decays

Exciting τ -imes

arXiv 1712.01368

- Gino Isidori (IW, Nov 2017) → idea: at high energies the 3 families are charged under 3 independent gauge groups (gauge bosons carry a flavor index)
- If the anomalies are due to NP, we should expect to see several other BSM effects in lowenergy observables:

	μμ (ее)	ττ	νν	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$B \rightarrow K^{(*)} \tau\tau$ $\rightarrow 100 \times SM$	$B \rightarrow K^{(*)} vv$ $O(1)$	$\begin{array}{c} B \to K \ \tau \mu \\ \hline \to \sim 10^{-6} \end{array}$	$ \begin{array}{c} \mathbf{B} \to \mathbf{K} \ \mu \mathbf{e} \\ \hline ??? \end{array} $
$b \rightarrow d$	$\begin{array}{l} B_{d} \rightarrow \mu \mu \\ B \rightarrow \pi \ \mu \mu \\ B_{s} \rightarrow K^{(*)} \ \mu \mu \end{array}$ $O(20\%) \ [R_{K}=R_{\pi}]$	$B \rightarrow \pi \tau \tau$ $\rightarrow 100 \times SM$	$B \rightarrow \pi vv$ $O(1)$	$\begin{array}{c} \mathbf{B} \to \pi \tau\mu \\ \hline \to \sim 10^{-7} \end{array}$	$B \rightarrow \pi \mu e$ $???$

- Tau reconstruction at Belle-II is facilitated compared to LHCb
- Analyses must drive the design of the LHCb Phase-II upgrade

 Larger datasets and analysis techniques constantly developing will make increasingly stringent tests in future

Decays	SM prediction	BELLE II limit reach 5 ab-1 (90% CL)	BELLE II limit reach 50 ab-1 (90% CL)
B→τe / B→τμ	UN		1.6 10-5/ 1.3 10-5
$B_s \rightarrow \tau e / B_s \rightarrow \tau \mu$		-	- 🕅
$B \to K \tau e \ / \ B \to \ K \tau \mu$	-	AL	2.1 10-6/ 3.3 10-6
$B \to \tau \tau$	(2.22±0.19) 10 ⁻⁸	3.0 10-4	9.6 10 ⁻⁵
$B_s \rightarrow \tau \tau$	(7.73±0.49) 10 ⁻⁷	8.1 10-4	
Β → Κττ	(1.20±0.12) 10 ⁻⁷	6.5 10 ⁻⁵	2.0 10⁵ 🧕
B →τv	(7.7±0.6) 10 ⁻⁵	Error ~0.7 10-5	Error ~0.3 10-5
$R_{\pi} B \rightarrow \pi[\tau/I]\nu$	0.641 ± 0.016	±0.23	±0.09
Decays	SM prediction	LHCb RUN3 (95% CL)	LHCb RUN5 (95% CL)
B→τμ	-	1.0 10-6	2.6 10-7
$B_s \rightarrow \tau \mu$	-	3.5 10 ⁻⁶	9.0 10-7
$B \to \tau \tau$	(2.22±0.19) 10 ⁻⁸	2.3 10-4	5.7 10 ⁻⁵
B _s →ττ	(7.73±0.49) 10 ⁻⁷	8.0 10-4	2.0 10-4
Synergy in $B \rightarrow \tau + \tau - : E$	BELLE II → better understanding of	intermediate resonance structure of the	$\tau \to \pi - \pi + \pi - \nu \tau \text{ decay}$
- exploited in LHC	b analysis to define a region with h G. Man	igher signal sensitivity, and control → po icinelli (CPPM)	ssible syst limitation)

Improvements for tau leptons:

- Better Ecal → better neutral isolation algorithms
- Tracking stations in the magnet $\rightarrow \sim 30\%$ more efficiency for $B \rightarrow \tau \tau$
- Hadronic trigger improvements (up to factors 2 for hadronic tau decays)
- Mass reconstruction methods depend heavily on the error on the primary and the tau decay vertices, hence any improvement in the tracking system will be highly valuable.