


Python 2 versus 3
PyHEP workshop 2018, Sofia, Bulgaria
Stefan-Gabriel Chitic, Ben Couturier on behalf of the LHCb collaboration
CERN

08/07/2018 Python 2 versus 3 2



Why should you migrate to Python 3?

End of support and updates for Python 2.x

• Python 2.6.x ended with 2.6.9 in 2013 - SLC6

• Python 2.7.x will end in 2020 - Centos 7

• No more 2.x

Now or it will be too late: Migrate to Python 3!
341/360 top pypi packages are Python 3 ready

08/07/2018 Python 2 versus 3 3



Python migration in Pypi repository

Figure: Python 2 vs Python 3 compatibility in Pypi packages1

1https://goo.gl/GXtqTL

08/07/2018 Python 2 versus 3 4

https://goo.gl/GXtqTL


What is new ?

Before the transition

Migration tools

Conclusion

08/07/2018 Python 2 versus 3 5



What is new ?

08/07/2018 Python 2 versus 3 6



What is new ?
• Cool new features

• Concurrent programming (Asyncio)

• Everything is an iterator

• Chained exceptions, Keyword only arguments, No more comparison

of everything to everything, and many others2

• NumPy, Astropy, matplotlib, Pandas, IPython, SymPy and many

others scientific Python libraries are all compatible with Python 3

(support will drop in 20203) and support for some packages (e.g.

CPython, osBrain, PyMeasure) is only available only for

python 3.x4
2http://goo.gl/cPNjgX.
3https://python3statement.org.
4https://goo.gl/Br16ZH.

08/07/2018 Python 2 versus 3 7



print as function!

• >>>from future import print function

• Not a big deal

• More flexible

• The string separator is customizable

>>>print("A=", 20, sep="")

A=20

• Print function can be overridden

>>>import builtins

>>>builtins.print = custom logger

08/07/2018 Python 2 versus 3 8



Syntax changes

• Exceptions:

• Python 2 : ...except (IoError, OSError), err

Python 2 & 3: ...except (IoError, OSError) as err

• Relative imports:

• Python 2: >>>from local package import function

Python 3: >>>from .local package import function

08/07/2018 Python 2 versus 3 9



Unicode vs Bytes

• All Strings are Unicode by default:

• Python 2: >>>u"Hello world"

Python 3: >>>"Hello world"

• Python 3: two byte classes are introduced: bytes and bytearray

• >>>b"this is data"

• >>>bytes([1, 2, 3, 4])

b’\x01\x02\x03\x04’

08/07/2018 Python 2 versus 3 10



Division

• >>>5/2

• Python 2: 2

• Python 3: 2.5

• Python 3 semantics in Python 2

• >>>from future import division

• -Q flag to interpreter

• Not automatic for something other than built-in types

08/07/2018 Python 2 versus 3 11



Python 3 and mathematics

• Matrix multiplications >>>x@y

• Extended iterable unpacking:

>>>a, *b, c = range(5)

• Integer unification:

• int went away

• long became int

• L suffix does not exists anymore

08/07/2018 Python 2 versus 3 12



Before the transition

08/07/2018 Python 2 versus 3 13



Impact

• Long transition time: Keep the retro-compatibility with previous

python versions: 2.6.6 (default on SLC6), 2.7.5 (default of Centos7)

• Maintain one package for all python version

• Avoid adding/removing (extra) dependencies

08/07/2018 Python 2 versus 3 14



Needs

• Strategy on how the migration should be done

• Testing environment for all the considered python version

• Analysis of cross-versions dependencies

• Multi-python version: matrix of tests to see the failures on different

versions

08/07/2018 Python 2 versus 3 15



Continuous integration and testing

• Matrix of python versions: 2.6.6 (default for SLC6), 2.7.5

(default for Centos7), 2.7.15 (latest 2.7.x) and 3.7

(latest 3.x)

• Docker ready template usable on GitLab CI

• Automated unit and integration testing in GitLab CI, Jenkins,

tox and other continuous integration systems.

08/07/2018 Python 2 versus 3 16



Migration tools

08/07/2018 Python 2 versus 3 17



Backported features

Many features of Python 3 are available in 2.6

• Unicode and bytes literals : from future import

unicode literals

• Future built in functions: from future builtins import map,

zip, hex

• New syntax for catching and raising exceptions compatibility

08/07/2018 Python 2 versus 3 18



Pylint

• Can warn against some thinks not allowed or changed in Python 3

• Use the --py3k to run only checks related to Python 3 compatibility

08/07/2018 Python 2 versus 3 19



Pep8

• Yet another tool to check your Python code against some of the

style conventions in PEP 8.

• Comes with an automated rules transformer called autopep

08/07/2018 Python 2 versus 3 20



2to3

• Reads Python 2.x source code and transform it into valid Python 3.x

• Library contains a rich set of fixers that will handle almost all code

• Possible to write your own rules verifiers for 2to3

• https://docs.python.org/2/library/2to3.html

08/07/2018 Python 2 versus 3 21

https://docs.python.org/2/library/2to3.html


Modernize

• Based on 2to3 library

• Updates Python 2 code to work with Python from 2.6 to 3.x

• https://github.com/python-modernize

08/07/2018 Python 2 versus 3 22

https://github.com/python-modernize


Futurize

• Like Modernize

• Backports of Python 3 features like byte type

• Part of future project

• http://python-future.org/

08/07/2018 Python 2 versus 3 23

http://python-future.org/


Sorry!

Some fixes are not done automatically! They need working
and thinking!

• Need to decide between text and binary data

• In Python 3, range, zip, map, dict.values, etc return

memory-efficient iterables

• If you want a list, just wrap the result with list

• Explicit is better than implicit

08/07/2018 Python 2 versus 3 24



LHCb Python 3 migration

• Python 2 is highly used in LHCb

• As mentioned in Distributing Python for the HEP environment by

B. Couturier , LHCb software stack middleware are Python 2 based

(e.g arc : 15.03.14, GFAL2 : 2.15.4, FTS3 : 3.7.8, dcap : 2.47.12,

xrootd : 4.8.3, etc)

• LHCb infrastructure for CI has already started the migration:

LbInstall, LbScripts

• Testing and CI for Python 3: ready in Gitlab CI

08/07/2018 Python 2 versus 3 25



E.g. of docker and Gitlab CI
integration and testing

Figure: Lbmessaging Gitlab CI

08/07/2018 Python 2 versus 3 26



Lessons learned

• DON’T use 2to3, autopep in this order because first step will

render the code almost python 3 ready and the second step will

impact all the files, making debugging impossible

• Lint as much as possible and respect the coding rules and guidelines

08/07/2018 Python 2 versus 3 27



Conclusion

• It is the time to migrate to Python 3.

• Extra code to keep the retro compatibility should be easy to remove

when your code will drop Python 2 support

• New code should be written in Python 3 directly (Remember:

341/360 are python 3 ready)

• Infrastructure is available for new projects

08/07/2018 Python 2 versus 3 28



Remember!

• Python 3 will become the default version on future operating

systems

• #!/usr/bin/env python2

• Code today in Python 3 and back port it to Python 2

• # -*- coding: utf-8 -*-

from future import (division, absolute import,

print function)

08/07/2018 Python 2 versus 3 29



home.cern

http://home.cern


More stuff

• Conda environment manager:

https://conda.io/miniconda.html

• LHCb docker images for Python: dockerpullgitlab-registry.

cern.ch/lhcb-docker/python-deployment

• Python 3 features: https:

//www.asmeurer.com/python3-presentation/slides.html

08/07/2018 Python 2 versus 3 31

https://conda.io/miniconda.html
docker pull gitlab-registry.cern.ch/lhcb-docker/python-deployment
docker pull gitlab-registry.cern.ch/lhcb-docker/python-deployment
https://www.asmeurer.com/python3-presentation/slides.html
https://www.asmeurer.com/python3-presentation/slides.html


More links

• http://py3readiness.org/

• https://python3wos.appspot.com/

• https://docs.python.org/3/howto/pyporting.html

• https://github.com/brettcannon/caniusepython3

08/07/2018 Python 2 versus 3 32

http://py3readiness.org/
https://python3wos.appspot.com/
https://docs.python.org/3/howto/pyporting.html
https://github.com/brettcannon/caniusepython3

	What is new ?
	Before the transition
	Migration tools
	Conclusion

