_
CE/RW
\

Python 2 versus 3

PyHEP workshop 2018, Sofia, Bulgaria

Stefan-Gabriel Chitic, Ben Couturier on behalf of the LHCb collaboration
CERN

HCD
T“(A)

Why should you migrate to Python 37

End of support and updates for Python 2.x

® Python 2.6.x ended with 2.6.9 in 2013 - SLC6
® Python 2.7.x will end in 2020 - Centos 7

* No more 2.x

Now or it will be too late: Migrate to Python 3!
341/360 top pypi packages are Python 3 ready

HCD
T“(A)

Python migration in Pypi repository

Python 2 only

57.7%
Works on both

Python 3 only

Figure: Python 2 vs Python 3 compatibility in Pypi packages!

"https://goo.gl/GXtqTL

08/07/2018 Python 2 versus 3

https://goo.gl/GXtqTL

What is new ?
Before the transition
Migration tools

Conclusion

What is new ?

What is new ?

® Cool new features
* Concurrent programming (Asyncio)
* Everything is an iterator
* Chained exceptions, Keyword only arguments, No more comparison

of everything to everything, and many others?

* NumPy, Astropy, matplotlib, Pandas, IPython, SymPy and many
others scientific Python libraries are all compatible with Python 3
(support will drop in 2020%) and support for some packages (e.g.
CPython, osBrain, PyMeasure) is only available only for

python 3.x*
2http://goo.gl/cPNjgX.
3https://python3statement.org.
*https://goo.gl/Br16ZH.

Python 2 versus 3

print as function!

¢ >>>from __future__ import print_function

* Not a big deal
* More flexible
* The string separator is customizable
>>>print ("A=", 20, sep="")
A=20
* Print function can be overridden

>>>import builtins

>>>builtins.print = custom_logger

Syntax changes

® Exceptions:

* Python 2except (IoError, 0SError), err
Python 2 & 3: ...except (IoError, 0SError) as err

® Relative imports:

* Python 2: >>>from local_package import function

Python 3: >>>from .local_package import function

Python

Unicode vs Bytes

* All Strings are Unicode by default:

* Python 2: >>>u"Hello world"
Python 3: >>>"Hello world"

® Python 3: two byte classes are introduced: bytes and bytearray

® >>>b"this is data"
* >>>bytes([1, 2, 3, 41)
b’ \x01\x02\x03\x04’

Division

° >>>5/2
* Python 2: 2
* Python 3: 2.5
® Python 3 semantics in Python 2

® >>>from __future__ import division

* -Q flag to interpreter

* Not automatic for something other than built-in types

Python 3 and mathematics

® Matrix multiplications >>>xQy

® Extended iterable unpacking:
>>>a, *b, c = range(5)
® Integer unification:

* int went away

* long became int

* L suffix does not exists anymore

Before the transition

Impact

® Long transition time: Keep the retro-compatibility with previous

python versions: 2.6.6 (default on SLC6), 2.7.5 (default of Centos7)
® Maintain one package for all python version

* Avoid adding/removing (extra) dependencies

08/07/2018 Python 2 versus 3

Needs

® Strategy on how the migration should be done
® Testing environment for all the considered python version
® Analysis of cross-versions dependencies

® Multi-python version: matrix of tests to see the failures on different

versions

Continuous integration and testing

® Matrix of python versions: 2.6.6 (default for SLC6), 2.7.5
(default for Centos7), 2.7.15 (latest 2.7.x) and 3.7
(latest 3.x)

® Docker ready template usable on GitLab CI

® Automated unit and integration testing in GitLab CI, Jenkins,

tox and other continuous integration systems.

08/07/2018 Python 2 versus 3

Migration tools

Backported features

Many features of Python 3 are available in 2.6

® Unicode and bytes literals : from __future__ import
unicode_literals

® Future built in functions: from future builtins import map,
zip, hex

* New syntax for catching and raising exceptions compatibility

Python 2

Pylint

® Can warn against some thinks not allowed or changed in Python 3

® Use the ——py3k to run only checks related to Python 3 compatibility

Pep8

® Yet another tool to check your Python code against some of the

style conventions in PEP 8.

® Comes with an automated rules transformer called autopep

2to3

® Reads Python 2.x source code and transform it into valid Python 3.x
® Library contains a rich set of fixers that will handle almost all code
* Possible to write your own rules verifiers for 2to3

® https://docs.python.org/2/library/2to3.html

08/07

https://docs.python.org/2/library/2to3.html

Modernize

* Based on 2to3 library

® Updates Python 2 code to work with Python from 2.6 to 3.x

® https://github.com/python-modernize

https://github.com/python-modernize

Futurize

® Like Modernize
® Backports of Python 3 features like byte type

® Part of future project

® http://python-future.org/

http://python-future.org/

Sorry!

Some fixes are not done automatically! They need working
and thinking!

® Need to decide between text and binary data

® In Python 3, range, zip, map, dict.values, etc return

memory-efficient iterables

* If you want a list, just wrap the result with 1ist

® Explicit is better than implicit

LHCb Python 3 migration

® Python 2 is highly used in LHCb

® As mentioned in Distributing Python for the HEP environment by
B. Couturier , LHCb software stack middleware are Python 2 based
(e.g arc : 15.03.14, GFAL2 : 2.15.4, FTS3 : 3.7.8, dcap : 2.47.12,

xrootd : 4.8.3, etc)

® LHCb infrastructure for Cl has already started the migration:
Lbinstall, LbScripts

® Testing and ClI for Python 3: ready in Gitlab Cl

08/07/2018 Python 2 versus 3

E.g. of docker and Gitlab Cl
integration and testing

L lbmessaging centos? Retry
2018-06-07 09:01:52.425 [info] <0.2520.0> connection <0.2520.0> (127.0.0.1:44460 -> 127.0.0.1:5672): user —
*lhcbadnin' authenticated and granted access to vhost '/lhcb-test'
£ Overview 2018-06-07 09:01:52.456 [info] <0.2537.0> accepting AMQP connection <0.2537.0> (127.0.0.1:44464 —> 127.0.
0.1:5672) Duration: 2 minutes 43 seconds
2018-06-07 09:01:52.461 [info] <0.2537.0> connection <0.2537.0> (127.0.0.1:44464 —> 127.0.0.1:5672) Runner: #881
® Repository *Inchadnin' authenticated and granted access to vhost '/lhcb-test'
..2018-06-07 09:01:53.452 [warning] <9.2537.0> closing AMQP connection <0.2537.0> (127.0.0.1: . Tags: G
01 Registry 0.0.1:5672, vhost: '/lncb-test', user: *lhcbadmin’
client unexpectedly closed TCP connection
2016-06-07 09:01:53.470 [infol <0.2520.0> closing AMQP connection <0.2520.0> (127.0.0.1:44460 —> 127.0.0. Job artifacts
) Issues o : : '/lhcb-test’, user: 'lhcbadnin') The astifacts sere remotved e day ago
3.479 [infol <0.2558.0> accepting AMQP connection <0.2558.0> (127..0.1:44468 —> 127.0.
0.1:5672
[I 2016-06-07 09:01:53.483 [infol <0.2558.0> connection <0.2558.0> (127.0.0.1:44468 —> 127.0.0.1:5672): user
2 9:01:53. 2558, ;2558 -00-1: -0 Commit 2abb34c3 Iy
*lnchadnin’ authenticated and granted access to vhost '/lhcb-test
11 Merge Requests 0 2010-06-07 09:01153.487 (ol <0.2565.0> accepting MNP comection <0.2565.0> (127.0.0.1:44472 —> 127.0. Update gitlab-clym
.1:5672.
2018-06-07 09:01:53.494 [info] <0.2566.0> connection <0.2566.0> (127.0.0.1:44472 -> 127.0.0.1:5672): user
®ci/co *lhcbadnin' authenticated and granted access to vhost '/lhc-te: © centos? @
2018-06-07 09:01:53.677 [warning] <0.2558.0> closing AP connection <0.2558.0> (127.0.0,1:44458 - =
Pipelines 0.1:5672, vhost: '/lhcb-test', user: 'lhcbadain'):
client unexpectedly closed TCP connection
Jobs 2018-06-07 09:01:57.497 [warning] <0.2566.0> closing AMQP connection <0.256 = © centos?
0.1:5672):
Schedules nissed heartbeats fron client, timeout: 1s © python3s
o S Miss Cover Missing
R nessaging/_init_.py D pythonds
¢ bmessaging/exchanges/ConmandExchange. py
N bmessaging/exchanges/Connon. py 26; x 49-54, 58, 89, 42
G 6, 457461, 67571, 595-506, S90-GM0, 653, 705, 7L, TIa-T2T 2 python2.7
bmessaging/exchanges/Cont inuousIntegrat ionExchange. p 58, 61-66, 77
0 Settingn bmessaging/exchanges/CvnfsConDBExchange. py

Lbmessaging/exchanges/Cunf sDevexchange.

Figure: Lbmessaging Gitlab Cl

Python 2 versus

essons learned

* DON'T use 2to3, autopep in this order because first step will
render the code almost python 3 ready and the second step will

impact all the files, making debugging impossible

® Lint as much as possible and respect the coding rules and guidelines

08/07/2018 Python 2 versus 3

Conclusion

® |t is the time to migrate to Python 3.

® Extra code to keep the retro compatibility should be easy to remove

when your code will drop Python 2 support

* New code should be written in Python 3 directly (Remember:

341/360 are python 3 ready)

® Infrastructure is available for new projects

08/07/2018 Python 2 versus 3

Remember!

® Python 3 will become the default version on future operating
systems
* #!/usr/bin/env python2
® Code today in Python 3 and back port it to Python 2
° # -* coding: utf-8 -*-
from __future__ import (division, absolute_import,

print_function)

08/07/2018 Python 2 versus 3

home.cern

http://home.cern

More stuff

* Conda environment manager:

https://conda.io/miniconda.html

® LHCb docker images for Python: dockerpullgitlab-registry.
cern.ch/lhcb-docker/python-deployment

® Python 3 features: https:

//www.asmeurer.com/python3-presentation/slides.html

08/07/2018 Python 2

https://conda.io/miniconda.html
docker pull gitlab-registry.cern.ch/lhcb-docker/python-deployment
docker pull gitlab-registry.cern.ch/lhcb-docker/python-deployment
https://www.asmeurer.com/python3-presentation/slides.html
https://www.asmeurer.com/python3-presentation/slides.html

More links

® http://py3readiness.org/
® https://python3wos.appspot.com/
® https://docs.python.org/3/howto/pyporting.html

® https://github.com/brettcannon/caniusepython3

Python 2

http://py3readiness.org/
https://python3wos.appspot.com/
https://docs.python.org/3/howto/pyporting.html
https://github.com/brettcannon/caniusepython3

	What is new ?
	Before the transition
	Migration tools
	Conclusion

