
The NEXT experiment analysis framework

J. Generowicz, J.J. Gómez Cadenas, G. Martínez Lema

Outline

• Overview of the NEXT experiment

• Software philosophy

• The IC framework

• Features

• Structure

• Dataflow

�2

What is NEXT?

�3

The NEXT experiment

• NEXT stands for Neutrino Experiment with a Xenon TPC

• We aim to detect the neutrinoless double beta decay (ßß0ν) in 136Xe

�4

The NEXT-White detector, first stage of the experiment

The NEXT experiment

• The detector is a Time Projection Chamber with two sensor planes:

• PMTs for calorimetry

• SiPMs for tracking

�5

The NEXT experiment

• To detect the ßß0ν, we measure the energy spectrum of the two electrons emitted in the decay

• The signal (ßß0ν) spectrum is a narrow peak around the decay energy

• To reduce background contamination we perform topological analyses:

• Signal events have large energy depositions (blobs) at both ends of a thin track

• Background events are identical, but they contain just one blob

�6

Software philosophy

�7

Our previous experience

• C++-based code

• Write a lot to do very little: very low productivity

• Lack of expertise: bad quality code

• ROOT-oriented

• No automated test suite: continuous bug fixing

• Bus number* <= 1

• Use of personal implementations: reinvention of the wheel

�8
*Bus number: the smallest number of members of your team that would 
 have to be run over by a bus, in order to stall your project

Software philosophy
• Python first

• High-productivity language

• The user can easily become a developer

• CPU-intensive tasks can be handled by the vast range of standard libraries with minimal
speed penalty

• We have found that cython and numba are almost expendable, with few exceptions

• Automated test suite

• Makes the code more robust

• Protects future modifications against bugs

• Useful as documentation

• Increases the comprehension of the code

�9

Software philosophy

• Do not reinvent the wheel

• Most of what we need has already been written (better and more efficiently)
elsewhere

• We only need to make it fit our use case

• Our code relies on standard libraries such as numpy, scipy, pytables, pandas
and matplotlib

• Code review by a second developer

• Bad quality code can waste a lot of human resources

• Increases the knowledge and understanding of the code among the
collaborators: increase of the bus number

• Untested code cannot make its way to the official software
�10

The IC framework

�11

The IC framework
• IC stands for Invisible Cities and for Italo Calvino, author of this book

• Publicly available repository at https://github.com/nextic/IC

�12

IC core team:

• Jacek Generowicz

• Gonzalo Martínez Lema

• Juan José Gómez Cadenas

• Alejandro Botas

• Paola Ferrario

• Jose María Benlloch

• Ander Simón

• Andrew Laing

• Brais Palmeiro

• Josh Renner

• Jose Angel Hernando Morata

https://github.com/nextic/IC

Features

• It is a pure-python framework

• Written in python 3 (https://pythonclock.org/)

• Built around the anaconda ecosystem with few exceptions

• No ROOT

• No C++

• Version control via github (+ magit)

• Largely tested with pytest and hypothesis

• Continuous integration with Travis

• Continuous release

�13

https://pythonclock.org/

Major dependencies: data storage

• We use the hdf5 library to store our data

• Flexible and efficient storage

• Fast I/O operations

• Optimized memory usage

• Great python interface with pytables

• Broadly used outside the particle physics community

�14

https://support.hdfgroup.org/
http://www.pytables.org/

Major dependencies: data analysis

• scipy and pandas provide most of the tools we need for data analysis

• Curve fitting

• Signal processing

• Pattern recognition

• Statistical analysis tools

• matplotlib provides all the tools for data visualization

• Most importantly

• All of them work in harmony together
�15

Structure

�16

Cities
Processing chain

Reco
Data processing

functions

Core
Generic functions

Database
Sensor data

Event model
& IO

Data description

Structure: reconstruction chain (aka cities)

�17

Raw
waveforms PMAPS

kDST hDST

Raw
data

MC
data

Decoder

Diomira

Irene

Doro
the

a Penthesilea

*All the names come from the cities in the book

Dataflow

• Coroutine-based structure for data processing

• Functional paradigm

• Pipeline structure

• Semantically obvious workflow

• Three main components:

• Sources: feed data into the pipeline

• Pipelines: transform or filter data

• Sinks: terminate pipelines. Typically write data to persistent storage or
summarize them

�18

Dataflow: features
• Split and combine data streams:

• Forks and branches: replicate the data stream in multiple pipelines

• Joins: merge pipelines

• Storage of execution variables

• Futures

• Pluggable structure

• The components can be added, replaced and removed as needed

• Small functions can be plugged into the workflow (facilitates testing)

• Spies: minimalistic branches for data observation

• Useful for debugging (an example later)

�19

Dataflow: schematics

�20

pipe A1

Source

pipe A2 pipe A3 sink A

pipe B1 pipe B2 sink B

pipe C1 pipe C2

pipe D1

sink C

sink D

Forking

Branching

Dataflow: debugging

�21

pipe A1

Source

pipe A2 pipe A3 sink A

pipe B1 pipe B2 sink B

pipe C1 pipe C2

pipe D1

sink C

sink D

Forking

Branching

spy

• Spies: designed to obtain information in the middle of a pipeline

Dataflow: an example

�22

pick pmt data

MC data

simulate pmt
wfs write pmt wfs

pick sipm data simulate sipm
wfs write sipm wfs

pick mc
metadata

write mc
metadata

write event
metadata

pick event
metadata

Dataflow: an example

�23

pick pmt data

MC data

simulate pmt
wfs write pmt wfs

pick sipm data simulate sipm
wfs write sipm wfs

pick mc
metadata

write mc
metadata

write event
metadata

pick event
metadata

Dataflow: another example

�24

pick pmt data

waveforms

calibrate pmt
wfs

write pmap

pick sipm data calibrate sipm
wfs

pick mc
metadata

write mc
metadata

write event
metadata

pick event
metadata

compute
pmap filter pmap

Dataflow

• An obvious advantage of this scheme is parallelization

• Asynchronous I/O is needed

�25

pipe A1

Source

pipe A2 pipe A3 sink A

pipe B1 pipe B2 sink B

pipe C1 pipe C2

pipe D1

sink C

sink D

Subprocess

Sub
pr

oc
es

s

Subprocess

Subprocess

Summary

• We have developed a pure-python framework for the NEXT experiment data
processing

• Built around the anaconda ecosystem

• No C++ or ROOT. Numba/Cython usage found to be marginal

• Exhaustive testing of the code

• Git version control + travis for continuous integration

• We use the dataflow scheme

• Coroutine-based structure

• Semantically obvious workflow

�26

Backup slides

https://pythonclock.org/

�29

https://pythonclock.org/

Magit

• Magit is a high-level interface to git used from emacs

• It is intuitive and easy to learn and use

• Improves the git use experience by a factor 10100, roughly

• Short, easy-to-remember key combinations for all
common operations in git

• Simple, yet formidable visual interface

�30

Magit testimonials
• Thank you Magit for teaching me git.

• Magit profoundly changed my understanding of
Git.

• I recommend magit to everyone even if it’s the
only reason they ever open emacs.

• Every time I use magit: How do I . . . ? It would
be really cool if it worked like this. . . Oh! It
does!

• Magit is the only git client where I can be faster
than on the command line, great stuff.

• Magit being a nice interface to git is the
understatement of the year: it’s the best
interface to git.

• People I work with usually think I’m crazy for
using Emacs but everybody is always blown
away by magit when they see it.

• This might be the best user interface available
to Git anywhere.

• It doesn’t just make git easier, or more intuitive,
but also makes you a more effective git user.

• Magit made me so much better at using Git, it’s
ridiculous

• Magit is one of those rare packages which
actually help you better understand the tool it
provides an interface to.

• Magit allowed me to become very fluid with
operations others wouldn’t dare considering for
their normal workflow while feeling very safe

�31

HDF5 users

• NASA

• Argonne National Laboratory

• Deutsche Bank

• Japan Aerospace Exploration Agency

• Gemini Observatory

• National Oceanographic Data Center

• …
�32

https://support.hdfgroup.org/HDF5/users5.html

Hypothesis
• https://github.com/HypothesisWorks/hypothesis/tree/master/hypothesis-python

• https://hypothesis.readthedocs.io/en/latest/

�33

https://github.com/HypothesisWorks/hypothesis/tree/master/hypothesis-python
https://hypothesis.readthedocs.io/en/latest/

