

Exercise 10: Cutoffs

FLUKA Beginner's Course

Exercise: Cutoffs

Aim of the exercise:

- 1- See the effect of different thresholds (easier with thin layers)
- 3- Improve plotting skills
- 4- Reminder on backscattering

Start from the solution of ex_Geo1

mkdir ex_Cutoffs ;

cp ex_Geo1/ex_Geo1_final.inp ex_Cutoffs/ex_Cutoffs.inp;

cd ex_Cutoffs

- flair ex_Cutoffs.inp (and immediately save as Flair project) CHANGES TO BEAM AND GEOMETRY
- □ 10 MeV electron beam
- Beam size: circular with 2 mm radius

See FLUKA manual, BEAM card:

WHAT(6), WHAT(5), WHAT(4) search for "annular beam"

FURTHER CHANGES TO BEAM AND GEOMETRY

- Change target radius to 5 mm, thickness of each layer to 50 µm
- Remove any lingering GEOEND/STOP card
- Change surrounding CO2 into VACUUM (remove CO2 cards)
- Swap material of TARGS2 and TARGS3
 - □ It was: $H_2O AI Pb$ → we redefine to $H_2O Pb AI$

Instructions: general settings

Reminder: thin layers require high tracking precision, therefore DEFAULT PRECISIO is needed (should already be there)

Instructions: general settings (continued)

Turn on single scattering at boundaries for EM particles (find out how; hint: MULSOPT with SDUM=GLOBEMF) and set the number of single scatterings when crossing a boundary to 2

Instructions: set thresholds

Define 3 preprocessor variables: HI-THR, LOW-THR, VLOW-THR

Use EMFCUT and DELTARAY cards to set both production and transport thresholds in <u>all materials</u> (hint: when specifying the range of materials/regions, use @LASTMAT/@LASTREG to refer to the last)

#if HI-THR

photons: 5 keV ,	electrons: 1 MeV kinetic energy,	FUDGEM=1
#elif LOW-THR		
photons: 5 keV ,	electrons: 100 keV kinetic energy,	FUDGEM=1
#elif VLOW-THR		
photons: 5 keV ,	electrons: 10 keV kinetic energy,	FUDGEM=0.5
#endif		

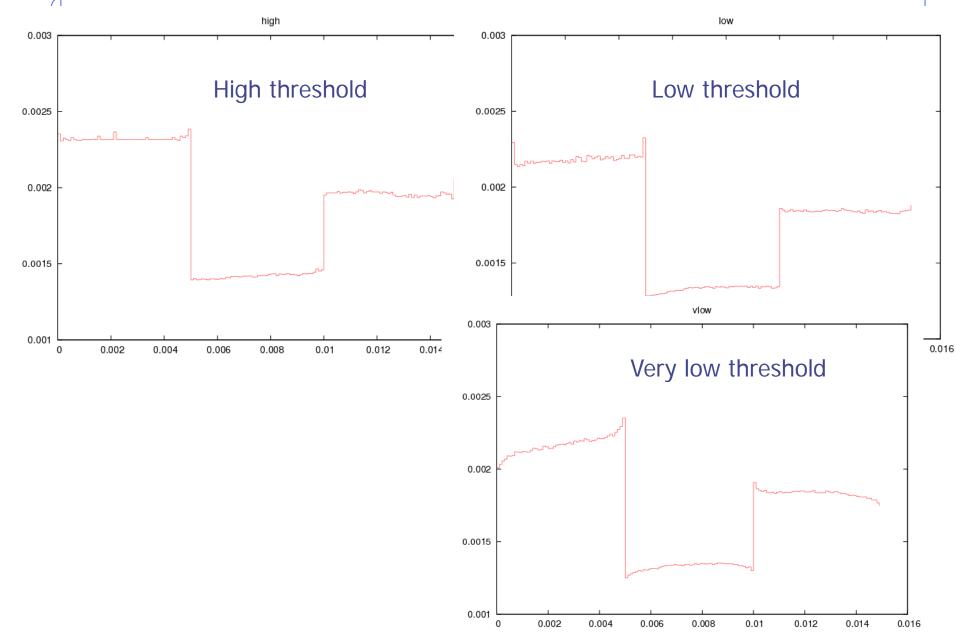
Reminder: stopping powers and ranges for electrons, protons, and He ions are available on the NIST webpage: www.nist.gov/pml/data/star/index.cfm

Instructions: scoring

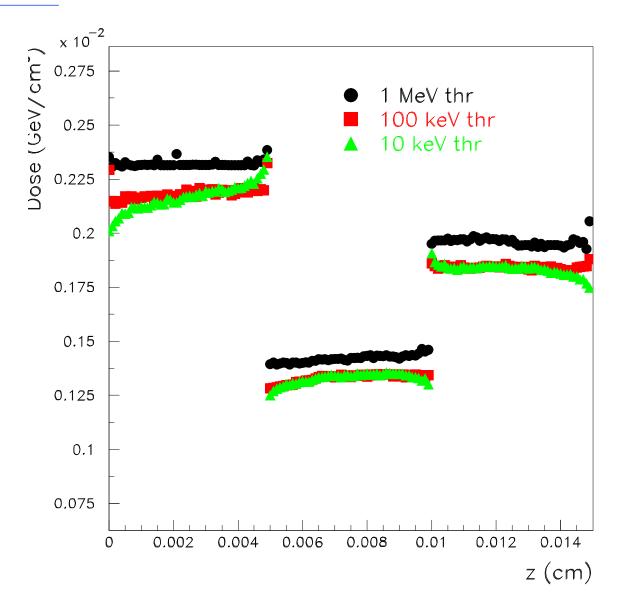
- □ 1 USRBIN scoring DOSE over the target
 - Use 1 µm bins in z, 1 µm bins in R, unformatted unit 55

I USRBDX scoring backscattered electron & positron fluence

- Score from TARGS1 to INAIR
- Use 1 linear bin in angle (you can leave the minimum and maximum solid angles blank such that default values are used), 100 linear bins in energy (between 0 and beam energy), unformatted unit 56

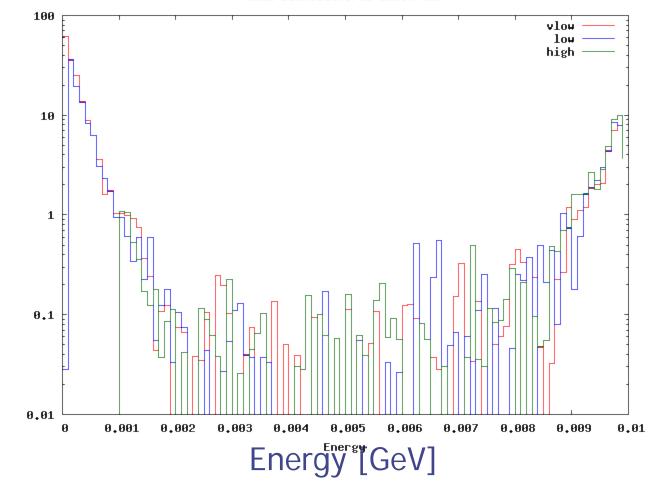

Instructions: running

- □ For each threshold setting run 5 cycles x 100000 primaries
- Remember not to overwrite results


Plot the results

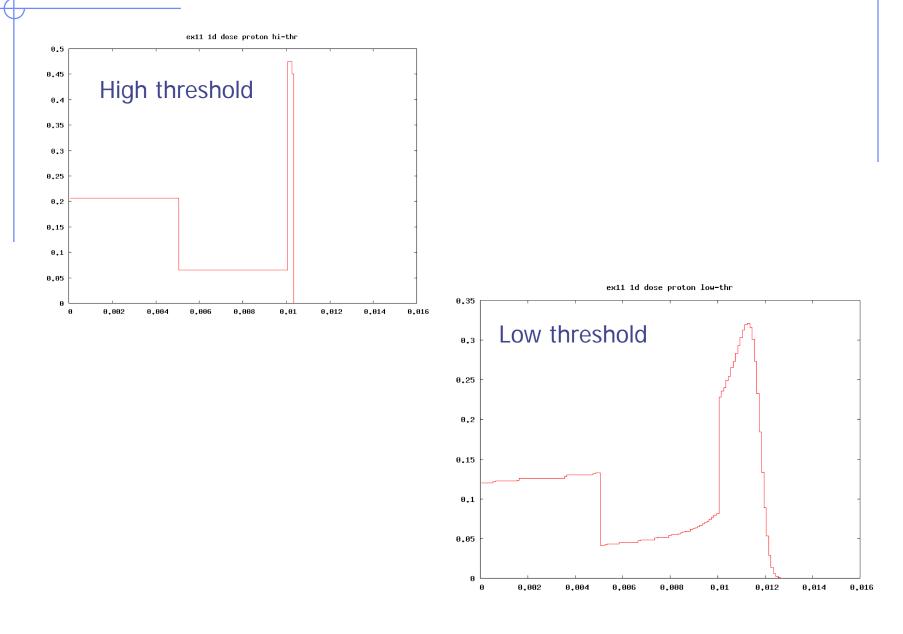
- Plot the three backscattered electron cases on the same plot
- Dose: 1D-proj in z
 (fix y-scale: gnuplot option using: set yrange[xx:yy])

Exercise: Cutoffs – I solution



Exercise: Cutoffs – I solution

Exercise: Cutoffs – I solution


ex11 backscattered electrons

Exercise: Cutoffs - II Instructions: again proton beam

- 4 MeV proton beam (use #define PROTON) using the same beam size as for the previously defined electron beam (circular with 2 mm radius) and no momentum spread and divergence.
- □ Add #if/#elif/#endif statements to easily select between a proton and an electron beam, e.g. by setting #define PROTON)
- For HI-THR, LOW-THR, and VLOW-THR set proton threshold at 10 MeV, 100 keV, and 10 keV respectively (PART-THR and DELTARAY cards)
 Add MAT-PROP card specifying a DPA-ENERgy threshold
 - of 25 eV for lead and 27 eV for aluminum
 - (only for the VLOW-THR case)
- Add R-Φ-Z USRBIN to score Displacement Per Atom and Non Ionizing Energy Loss deposition over aluminum and lead (50 bins in R, 1 bin in Φ, 100 bins in Z) Unformatted unit 57

Exercise: Cutoffs – II solution

