

Induced Activity

FLUKA Beginner's Course

FLUKA-Implementation – *Main features*

The generation and transport of decay radiation (limited to γ , b-, b+, Xrays, and Conversion Electrons emissions for the time being) is possible during the same simulation which produces the radionuclides (one-step method). For that, a dedicated database of decay emissions is used, based mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency.

As a consequence, results for production of residuals, their time evolution and residual doses due to their decays can be obtained in the same run, for an arbitrary number of decay times and for a given irradiation profile.

FLUKA-Implementation – *Main features*

- up to 4 different decay branching for each isotope/isomer

- all gamma lines down to 0.1-0.01% branching, including X-ray lines following conversion electron emissions
- all beta emission spectra down to 0.1-0.01% branching: the sampling of the beta+/- spectra including screening Coulomb corrections
- Auger and conversion electrons
- Isomers: the present models do not distinguish among ground state and isomeric states (it would require spin/parity dependent calculations in evaporation). A rough estimate (equal sharing among states) of isomer production can be activated in the RADDECAY option.

<u>NOTE</u>: In future major release branchings for isomers produced by neutrons <20 MeV will be based on JEFF \rightarrow no more simple 50/50 share

 Different transport thresholds can be set for the prompt and decay radiation parts, as well as some (limited) biasing differentiation (see later)

Input options

Input options - Overview

Input card: RADDECAY

requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

Input card: IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

Input card: DCYTIMES

definition of decay (cooling) times measured from end of irradiation cycle (t=0)

Input card: DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times

Input card: AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

Name	Number	Units	Description
DOSE	228	GeV/g	Dose (energy deposited per unit mass)
DOSE-EQ	240	pSv	Dose Equivalent (AUXSCORE)
ACTIVITY	234	Bq/cm ³	Activity per unit volume
ACTOMASS	235	Bq/g	Activity per unit mass
SI1MEVNE	236	cm ⁻²	Silicon 1 MeV-neutron equivalent flux
HADGT20M	237	cm ⁻²	Hadrons with energy > 20 MeV

Card: RADDECAY ^[1/3]

WHAT(3)

#

Replicas:

	-	± v	3.0 000			
RADDEC	AΥ	Decays: Active	e 🔻 🛛 Patch Isom:	•	Replicas:	3.0
h/µ Int:	ignore 🔻	h/µ LPB: ignore	e 🔻 🛛 h/µ WW:	ignore 🔻	e-e+ Int:	ignore 🔻
e-e+ LPB:	ignore 🔻	e-e+ WW: ignore	e 🔻 🛛 Low-n Bias:	ignore 🔻	Low-n WW:	ignore 🔻
		decay cut: 0.0	prompt cut:	99999.0	Coulomb corr:	¥
	1	considered at the	ese (fixed) times			ation is
						Δ
Semi-	Analogue	each radioactive (random decay t particles/nuclei c	nucleus is treated ime, daughters an arry time stamp ("	like all othe d radiation) age")	er unstable p), all seconda	e articles ry

number of "replicas" of the decay of each individual nucleus

Card: RADDECAY ^[2/3]

(] ,						
	Decays:	Active V	Patch Isom:	Tignoro T	Replicas:	3.0
n/µ int: ignore ▼	nµ LPB:	ignore T	nµ ww:	ignore T	e-e+ int:	ignore 🔻
e-e+ LPB: lynore 🔻	e-e+ ww:	ignore •	Low-n Bias:		Low-n WW:	ignore •
	uecay cut.	0.0	prompt cut.	55555.5	Codionis con.	
/HAT(4)	switch for	r applying	various bia	asing feat	tures only to	o promp
/		or only to	ible for a diff	form radio	bactive deca	iys
/μ πι Low-n νννν	9 aigits, ea	ich respons	ible for a diff	erent blas	ing	
	Example:					
		5th digit, e	+/e-/gamma	leading p	article biasing	applied
		000010000	to prompt	radiation o	nlv	
		000020000	to docav re	diation on	hy .	
		000020000	10 uecay ra		iy	
		000030000) to both			

Default: 11111111 (or blank as above)

Card: RADDECAY [3/3]

e-e+ LPB: ignore ▼	e-e+ WW: ignore ▼	ир www: Low-n Bias:	ignore ▼	e-e+ Int: Low-n WW:	ignore
	decay cut: 0.0	prompt cut:	99999.0	Coulomb corr:	•

WHAT(5)

decay cut: prompt cut:

#

#

multiplication factors to be applied to e+/e-/gamma transport energy cutoffs (defined with EMF-CUT cards) 10 digits, first five for decay radiation, second five for prompt radiation (see manual) XXXXYYYYY

> 10 x Factor for decay radiation 10 x Factor for prompt radiation

e.g.:

0001000200

0.1 x 10 = 1 → decay radiation production and transport thresholds for EMF are not modified
0.1 x 200 = 20 → prompt radiation threshold increased by x 20

Special cases:

0000099999 kill EM cascade for prompt radiation 999990000 kill EM cascade for residual radiation

Card: IRRPROFI

\forall							
* 2) defin * IRRPROFI	ition of 180da 1.5552	irradiatio ays part/ 2E7 5.9175E	n pattern s 185days 5 1.5984E7	0.0	180days 1.5552E7	part/s 5.9175E5	
180days IRRPROFI	part/s 1	85days At: At: At:	180days part/s 1.5552E7 1.5984E7 1.5552E7	p/s: p/s: p/s:	5.9175E5 0.0 5.9175E5		
WHAT(1,3,5) ∆t:	#	irradiatio	on time (se	cond)			
WHAT(2,4,6) p/s	#	beam int Note: zero e.g., to de	ensity (par o intensity is efine beam-c	rticles pe accepted off periods	r second) and can be	e used	
	Notes:	Each card Several ca card (top)	has 6 inputs ards can be c to last (bot	s with 3 du combined tom)	urations / i . Sequence	ntensities (inter e order is assum	rcalated). red from firs
Example (see	e above 180 5.9 ×): days 10⁵ p/s	185 days 0 p/s	180 days 5.9 × 10 [!]	₅ p/s		
			(beam-off)				10

Card: DCYTIMES

* 3) definition of cooling times									
*	1hour	8hours	1day	7days	1month	4months			
DCYTIMES	3600.	28800.	8.64E4	6.048E5	2.592E6	1.0368E7			
1hour DCYTIMES	8hours 1day	7days 1m t1: 360	ionth 4month).	ns t2:	28800.		t3:	8.64E4	
		t4: 6.04	8E5	t5:	2.592E6		t6:	1.0368E7	

WHAT(1) - WHAT(6)cooling time (in seconds) after the end of the irradiationt1 .. t6Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option DCYSCORE to assign that particular cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

Card: DCYSCORE ^[1/2]

* Associate scor	ring with di	fferent coolir	ng times			
DCYSCORE	1.0		Shielding		US	SRBIN
USRBIN	10.0 2	0170.0	150.0	200.0	5000.0sh	nielding
USRBIN -2	250.0 -2	00. 0.0	80.0	80.0	1.0&	
DCYSCORE	Cooling t	3600. 🔻			Kind:	USRBIN 🔻
	Det	Shielding 🔻	to Det:	,	Step:	
USBBIN			Unit: 70) BIN 🔻	Name:	Shielding
Type: X-Y-Z 🔻	Xmin	-250.0	Xmax: 15	50.0	NX:	80.0
Part: ALL-PART V	Vmin	-200.	Vmax: 20	0.0	NV [.]	80.0
WHAT(4)WHAT Det to Det	(5) Dete	ctor index/r down list of a	name of kii	nd (SDUM	Kind)	
WHAT(6) Step #	step	lengths in a	ssigning ir	ndices		
WHAT(6) Step # SDUM Kind	step Type RESN	lengths in a of estimato UCLE, USRBIN	ssigning ir r N/EVENTBIN	ndices	, USRTRA	СК

Card: DCYSCORE [2/2]

In the semi-analogue decay mode, estimators can include the decay contribution (on top of the prompt one) through association by DCYSCORE with a cooling time index ≤ -1.0

Card: AUXSCORE

* associate :	scoring	with dose equivalent	conversion factors	EWT74							
AUXSCORE	USRBIN	PHOTON	Target								
AUXSCORE		Type: USRBIN ▼ Det: Target ▼	Part: PHOTON ▼ to Det: ▼	Set:EWT74 ▼ Step:							
WHAT(1)		Type of estimat	or to associate with	I							
Type:		drop down list of	estimator types (USRB	SIN, USRBDX)							
WHAT(2) Part:	#	particle or isoto Particle or particle Z, A, and State fo	article or isotope to filter scoring article or particle family list. If empty then flair will prompt for 2, A, and State for filtering on specific isotopes								
WHAT(4,5) Det to Det		Detector range Drop down list to	select detector range	of type WHAT(1)							
WHAT(6) Step:	#	Step in assignin	g indices of detecto	or range							
SDUM		Conversion set	for dose equivalent	(DOSE-EQ) scoring							
Set:		Drop down list of	available dose convers	sion sets							
<u>NO</u>	<u>TE:</u> Th	is card is NOT ju	st for activation-ty	ype							
SCO	orings.	It can be used f		on.							

Fluence to effective dose coefficients

- AMB74 is the default choice for dose equivalent calculation (scoring DOSE-EQ without AUXSCORE card)
- Conversion coefficients from fluence to effective dose are implemented for three different irradiation geometries:
 - anterior-posterior
 - rotational
 - WORST ("Working Out Radiation Shielding Thicknesses") is the maximum coefficient of anterior-posterior, posterior-anterior, rightlateral and left-lateral geometries. It is recommended to be used for shielding design.
- Implemented for radiation weighting factors recommended by ICRP60 (e.g., SDUM=EWT74) and recommended by M. Pelliccioni (e.g., SDUM=EWTMP).
- Implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these)
- Zero coefficient is applied to all heavy ions

Conversion Coefficients (Examples)

For more info: <u>http://cern.ch/info-fluka-discussion/download/deq2.pdf</u>

Card: RESNUCLEi [1/3]

$\forall \Box$										
RESNUCLE		3.0 -26.	0	0	FLOOR	TUN_FI	L00			
RESNUCL Max Z:	.E	Type: All Max M:	•	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Ti Vol:	UN_FLOO			
	Scoring	of residual nuc	lei or activity	on a re	egion basis					
WHAT(1)		type of prod	ucts to be so	cored						
Туре:	1.0	1.0 spallation products (all inelastic interactions except for low-energy neutron interactions, i.e. with multigroup treatment)								
2.0 products from low-energy neutron interactions (provided the information is available)										
	3.0	all residual nu	all residual nuclei are scored (if available, see above)							
	<= 0.0	resets the default (= 1.0)								
WHAT(2) Unit:		logical outp	ut unit (Defa	ault =	11.0)					
WHAT(3) Max Z:		Maximum at Default: accor to the scoring	tomic number ding to the Z region	er Z of of the	f the residu element(s) c	al nuclei di of the materi	al assigned			
WHAT(4) Max M:		Maximum M of the residua Default: maxi material assig	I = N - Z - NN I nuclei distrib mum value ac ned to the sco	VIZ_m oution (cording oring re	in (NMZ_min = g to the A, Z egion.	-5) of the eleme	ent(s) of th 17			

Card: RESNUCLEi [2/3]

RESNUCLE Max Z:	Type: All ▼ Max M:	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO
WHAT(5) Reg:	scoring region number/ (Default = 1.0 ; -1.0 or	nam @A	e LLREGS all re	gions)	
WHAT(6) Vol:	volume of the region in (Default = 1.0)	cm ³			
SDUM Name:	character string identif (max. 10 characters)	ying	the detector		

Notes:

- 1. In the case of heavy ion projectiles the default NMZ, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the low-energy neutron data set (see Manual)
- 3. Note: also protons are scored (at the end of their path)

Card: RESNUCLEi [3/3]

_				
	**** Isotope ****	e Yie	ld as a function of (nuclei / cmc / pr)	Mass Number **** ****
	A_min: 1 -	A_ma	x: 198	
	A:	186	1.5870372E-08 +/-	9.900000E+01 %
	A:	185	3.7605012E-09 +/-	9.900000E+01 %
	A:	184	1.4581326E-08 +/-	9.9000000E+01 %
	A:	183	1.0712972E-08 +/-	9.9000000E+01 %
	A:	182	7.4882118E-09 +/-	9.900000E+01 %
•				
	**** Isotope	e Yie	ld as a function of	Atomic Number ****
	* * * *		(nuclei / cmc / pr)	****
	Z_min: 1 -	Z_ma	x: 78	
	Z:	74	5.2413383E-08 +/-	9.9000000E+01 %
	Z:	42	3.0072785E-07 +/-	9.9000000E+01 %
	Z:	41	4.7906228E-08 +/-	9.900000E+01 %
	Z:	40	3.7605012E-09 +/-	9.900000E+01 %
	z:	38	3.7605012E-09 +/-	9.900000E+01 %
•				
,	**** Residual	l nuc	lei distribution **	* * *
	**** (nuo	clei	/ cmc / pr)	* * * *

Α\	Z 68	69	70	71	72	73	74	75	76	77	78
186	0.00E+0	0 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.59E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0	% +/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %
185	0.00E+0	0 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.76E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0	% +/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %
184	0.00E+0	0 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.46E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0	% +/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %
183	0.00E+0	0 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.07E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0	8 +/- 0.0 8	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %

19

use **PEANUT** model at all energies

to simulate a radioactive source:

Radioactive source of 60 Co (two main γ -emissions: 1332.5 keV and 1173.2 keV) cylindrical shape, 2cm diameter, 2mm height along z, centre of base of cylinder at origin

BEAM	27.0	60.0				ISOTOPE
HI-PROPE	27.0	60.0				
BEAMPOS	0.0	0.0	0.1	0.0	0.0	0.0
BEAMPOS	0.0	1.0	0.0	0.2	0.0	0.0CYLI-VOL

BEAM	Beam: Momentum 🔻	p:	Part: ISOTOPE V
∆p: Flat ▼	Δp:	∆¢: Flat ▼	Δφ:
Shape(X): Rectangular •	Δx:	Shape(Y): Rectangular •	Δy:
Seampos	Rin: 0.0	Rout: 15.0	Type: SPHE-VOL V
Seampos	x: 0.0	y: 0.0	z: 0.0
	COSX:	cosy:	Type: NEGATIVE V
SHI-PROPE	Z: 39.	A: 90.	Isom:

request decay by the RADDECAY card

Geometry modifications - 2

Material for second step:

Can only be set to VACUUM or BLCKHOLE, not to AIR or any other material. Otherwise, the following error is obtained:

*** Vacuum and Blackhole only permitted as alternate radioactive product material *** Abort called from ASMCRD reason RAD. DECAY MAT NOT 1/2 Run stopped! STOP RAD. DECAY MAT NOT 1/2

Future FLUKA releases will allow setting other materials for second step (e.g. to simulate insertion of 'fresh' shielding for activation). These effects can be currently estimated only with 'third-party' two-step methods

Geometry modifications - 3

Summary of main input cards

RADDECAY

requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

DCYTIMES

definition of decay (cooling) times

DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose equivalent) with different cooling times

AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

PHYSICS

switch to activate the evaporation of heavy fragments (up to A=24) and the simulation of coalescence

Backup slides

Benchmarks

Benchmark experiment

Irradiation of samples of different materials to the stray radiation field created by the interaction of a 120 GeV positively charged hadron beam in a copper target

Measurement and calculation of

Specific activities Residual dose equivalent rates

for different cooling times

Benchmark experiment – Instrumentation 1

Low-background coaxial High Precision Germanium detector (Canberra)

- use of two different detectors (90 cm³ sensitive volume, 60% and 40% relative efficiency)

Genie-2000 (Ver. 2.0/2.1) spectroscopy software by Canberra and PROcount-2000 counting procedure software

- include a set of advanced spectrum analysis algorithms, *e.g.*, nuclide identification, interference correction, weighted mean activity, background subtraction and efficiency correction
- comprise well-developed methods for peak identification using standard or usergenerated nuclide libraries. HERE: use of user-generated nuclide libraries, based on nuclides expected from the simulation and material composition

Efficiency calibration with LABSOCS

- allows the creation of a corrected efficiency calibration by modelling the sample taking into account self-absorption inside the sample and the correct detector geometry

Reference: M. Brugger, S. Roesler, et al., Nuclear Instruments and Methods A 562 (2006) 814-818

Benchmark experiment – Instrumentation 2

Portable spectrometer Microspec

- Nal detector, cylindrical shape, 5 x 5 cm
- folds spectrum with detector response ("calibrated" with ²²Na source)
- physical centre of detector determined with additional measurements with known sources (⁶⁰Co, ¹³⁷Cs, ²²Na) to be 2.4 cm

Reference: M. Brugger et al., Radiat. Prot. Dosim. 116 (2005) 12-15

Isotope		Copper		Iron	Iron Titaniur		n	Stainless Steel			Aluminum			Concrete		
⁷ Be	53.29d	1.47 ± 0.19	м	1.65 ± 0.22		1.50 ± 0.19		0.98 ± 0.24	м	C.N	0.71 ± 0.09		AI	1.17 ± 0.14		0. C
		0.84 ± 0.25		0.90 ± 0.15						-,						-, -
²² Na	2.60v	0.72 ± 0.11		0.70 ± 0.13	м	0.85 ± 0.11					0.76 ± 0.07		ΔΙ	0.86 ± 0.09		Ca (Si Ma)
24Na	14.065	0.72 ± 0.03		0.70 ± 0.13	191	0.63 ± 0.02		0.37 ± 0.02		Eq.(Cr.Si)	0.91 ± 0.03		AlMa	0.62 ± 0.02		
27Mm	0.46m	0.42 ± 0.03		0.48 ± 0.02		0.03 ± 0.02	M	0.57 ± 0.02		1 8,(01,01)	1.52 + 0.25		ALMa	0.02 ± 0.02		
28 Ma	9.40///	0.05 1.0.04		0.02 1.0.02		0.79 ± 0.14	IM	0.00 + 0.10	5.4	E- NE CO	1.52 ± 0.25		Ai,iviy	0.00 + 0.00		C= (S)
28 A I	20.917	0.25 ± 0.04	-	0.23 ± 0.03	-	0.31 ± 0.02	-	0.29 ± 0.10	IVI-	Fe, NI, OD		<u> </u>		0.29 ± 0.02	-	
29 А 1	2.24m	0.25 ± 0.03	-	0.21 ± 0.02	-	0.31 ± 0.02	- M	0.29 ± 0.10	IVI-	Fe,INI,SI)				0.29 ± 0.03	-	Ca,(SI)
386	0.00					0.93 ± 0.25	IAI									
m34 CL	2.040					0.60 ± 0.12	-	0.77 . 0.45		5 0 (11)				4.05 . 0.07		0
3801	32.00m			0.91 ± 0.19	IVI	1.19 ± 0.16		0.77 ± 0.15		Fe,Cr,(Mn)		<u> </u>		1.25 ± 0.07		Ca
3901	37.24m			0.61 ± 0.08		0.60 ± 0.01		0.58 ± 0.07	<u> </u>	Fe,Cr,(Mn)		<u> </u>				
41 a.m	55.60m			0.64 ± 0.11	IVI	0.73 ± 0.08		0.66 ± 0.12	<u> </u>	Fe,Cr, (Min)		<u> </u>				•
3814	1.82h	0.39 ± 0.06		0.46 ± 0.05		0.47 ± 0.04	-	0.38 ± 0.05		Fe,Cr,(Mn)				0.98 ± 0.14		Ca
4214	7.64m													1.76 ± 0.20	-	Ca
43vc	12.36h	0.66 ± 0.10		0.83 ± 0.06		0.95 ± 0.05		0.76 ± 0.09		Fe,Cr,(Mn)				1.21 ± 0.08		Ca
	22.30h	U.81 ± 0.10	-	0.77 ± 0.05		0.85 ± 0.03		0.74 ± 0.04		Fe,Cr,(Mn)				1.16 ± 0.05		Ca
**K	22.13m								<u> </u>							
*°K	17.30m															
*'Ca	4.54d	0.59 ± 0.16		0.56 ± 0.17	M	0.73 ± 0.12		0.51 ± 0.15	М	Fe,Cr,(Mn)				0.79 ± 0.12		Ca
*3Sc	3.89h	0.40 ± 0.07	-	1.01 ± 0.14		1.28 ± 0.28	-	0.93 ± 0.15		Fe,Cr,(Mn)						
**Sc	3.9 <i>3</i> h	0.89 ± 0.07		1.06 ± 0.06		0.88 ± 0.05		0.96 ± 0.08		Fe,Cr,(Mn)				0.83 ± 0.06		Fe,(Ti)
^{m+4} Sc	58.60h	0.95 ± 0.12		1.20 ± 0.09		2.13 ± 0.12		1.24 ± 0.09		Fe,Cr,(Mn)	1.08 ± 0.17		Fe,Mn	1.67 ± 0.22		Fe,(Ti)
46Sc	83.79d	0.81 ± 0.07		0.86 ± 0.07		0.93 ± 0.08		0.89 ± 0.08		Fe,Cr,(Mn)	0.79 ± 0.18		Mn,(Ti,Fe)	0.88 ± 0.10		Fe,(Ti)
4/Sc	80.28h	1.09 ± 0.14		1.17 ± 0.10	-	0.87 ± 0.07		1.06 ± 0.09		Fe,Cr,(Mn)	1.04 ± 0.15		Mn,(Ti,Fe)	1.00 ± 0.09		Fe,Ti,(Ca)
⁴⁸ Sc	43.67h	1.39 ± 0.16		1.47 ± 0.10		1.10 ± 0.04		1.42 ± 0.08		Fe,Cr,(Mn)				1.36 ± 0.25		Fe,Ti,(Ca)
⁴⁸ V	15.97d	1.16 ± 0.08		1.45 ± 0.06		1.11 ± 0.07		1.44 ± 0.11		Fe,Cr,(Mn)	1.07 ± 0.13		Fe,Mn	1.63 ± 0.16		Fe
⁴⁸ Cr	21.56h	0.92 ± 0.14		0.97 ± 0.07				1.02 ± 0.08		Fe,(Cr)				1.06 ± 0.23	М	Fe
⁴⁹ Cr	42.30m	1.00 ± 0.22	М	1.24 ± 0.12	-			1.06 ± 0.12		Fe,(Cr)						
⁵¹ Cr	27.70d	1.06 ± 0.13		1.15 ± 0.12		0.64 ± 0.24	М	1.24 ± 0.16		Fe,Cr	0.86 ± 0.16		Fe,Mn	1.33 ± 0.22		Fe
⁵² Mn	5.59d	0.68 ± 0.05		1.15 ± 0.04				1.09 ± 0.03		Fe,(Mn)	0.88 ± 0.07		Fe, Mn	1.39 ± 0.07		Fe
^{m52} Mn	21.10m	1.68 ± 0.35		1.24 ± 0.09				1.12 ± 0.10		Fe,(Mn)				1.75 ± 0.79	М	Fe
⁵⁴ Mn	312.12d	1.13 ± 0.12		1.01 ± 0.10				1.08 ± 0.11		Fe,(Mn)	0.96 ± 0.12		Mn, Fe	1.06 ± 0.13		Fe
⁵⁶ Mn	2.58h	0.81 ± 0.06		0.99 ± 0.05				1.33 ± 0.10		Fe	1.53 ± 0.25		Mn	1.03 ± 0.25		Mn,Fe
⁵² Fe	8.28h			1.09 ± 0.13				0.99 ± 0.19	М	Fe,(Mn)						
⁵³ Fe	8.51m															
⁵⁹ Fe	44.50d	0.82 ± 0.09														
⁵⁵ Co	17.53h	0.66 ± 0.09		0.76 ± 0.04				1.03 ± 0.05		Fe,Ni						
				1.13 ± 0.10												
⁵⁶ Co	77.27d	1.04 ± 0.08		1.15 ± 0.10				1.37 ± 0.11		Fe.Ni				0.80 ± 0.20	м	Fe
				1.79 ± 0.15												
⁵⁷ Co	271,79d	0.85 ± 0.09		0.38 ± 0.09	м			1.16 ± 0.13		Ni	0.66 ± 0.24	м	Cu.Zn Ni			
58Co	70 824	0.91 + 0.09		0.31 + 0.08	M			0.98 ± 0.10		Ni	0.82 ± 0.19		Cu Zn Ni			
60 C n	5274	0.90 + 0.08		0.01 1 0.00				0.00 I 0.10			5.52 ± 0.13					
61Co	00.00m	0.69 ± 0.09										-				
62Co	00.000	0.00 £ 0.08							-							
57 _{Mi}	30.005	0.76 ± 0.11						1 44 + 0.07		Nij		<u> </u>				
65 _{N1}	30.000	0.70 ± 0.11						1.44 ± 0.07		INI						
60 	2.520	1.46 ± 0.29														
61 c.	23./0m	0.78 ± 0.08							-							
64 o.	3.33h	0.87 ± 0.25														
62-	12.70h	0.63 ± 0.10														
⁶³ –	9.19h	1.05 ± 0.23														
⁰³ Zn	38.47m															
°°Zn	244.26d	0.62 ± 0.08														
		0.97 ± 0.20														

R = Ratio FLUKA/Exp

0.8 < R < 1.2

0.8 < R ± Error < 1.2

Exp/MDA < 1

R + Error < 0.8 or R - Error > 1.2

<u>Reference:</u>

M. Brugger, S. Roesler *et al.*, Nuclear Instruments and Methods A 562 (2006) 814-818 32

Benchmark experiment – Results 1

Dose rate as function of cooling time for different distances between sample and detector

<u>Reference:</u> M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

<u>Reference:</u> M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

Benchmark experiment – Results 3

Dose rate as function of cooling time

for different distances between sample and detector

Benchmark experiment

Applications

Applications – *LHC collimation region*

Applications – CNGS **CERN NEUTRINOS TO GRAN SASSO Underground structures at CERN** Access shaft PGCN TJ8 55m CNGS Works SPS tunnel Access Gallery Storage Chamber Access galleries Ventilation Chamber LHC/TI8 tunnel Target chambe gallery F Proton Deem Tunnel 140m Service Gallery Target Chamber Connection gallery to TI8/LHC Decay Tunnel

Miscellaneous

FLUKA-Implementation – *History - 1*

1995 – Offline evolution:

An offline code (usrsuwev.f) is distributed together with FLUKA, which allows the offline computation of the time evolution of a radionuclide inventory obtained with RESNUCLE for arbitrary irradiation profiles and decay times.

2002 – Two step method:

The offline code has been adapted for online use, each time a residual nucleus is produced during a particle cascade. This allows storing information on radionuclides for certain irradiation parameters and cooling times into an external file. This information can then be read in order to compute residual dose rates due to induced radioactivity (two-step method). Results were benchmarked in numerous irradiation experiments.

2004 - Online:

This capability has been implemented into FLUKA with an exact analytical solution of the Bateman equations describing activity build-up and decay during irradiation and cooling down, for arbitrary irradiation conditions.