

Quark flavour physics

1OP-HEPP, Bristol 27th March 2018

Searching for new physics in heavy flavour

Heavy-quark hadrons provide excellent way to search for **new sources of CPV** and **very rare decays**. Both allow to probe high energy scales beyond the energy frontier.

Historical precedent, e.g., B⁰ meson mixing @ ARGUS led to first indications about top quark mass > 50 GeV

[PLB 192 (1987) 245] [PLB 186 (1987) 247]

Generic flavour structures ruled out by many orders of magnitude.

Complementarity between flavour and high-pT searches can help us understand what NP is (or is not...)

Searching for new physics in heavy flavour

Heavy-quark hadrons provide excellent way to search for **new sources of CPV** and **very rare decays**. Both allow to probe high energy scales beyond the energy frontier.

Generic flavour structures ruled out by many orders of magnitude.

Complementarity between flavour and high-pT searches can help us understand what NP is (or is not...)

+ excellent chance to study QCD production + spectroscopy

The LHCb experiment

 $\sigma(pp \to b\bar{b}X)^{7\text{TeV}} = 72.0 \pm 0.3 \pm 6.8 \,\mu b$ $\sigma(pp \to b\bar{b}X)^{13\text{TeV}} = 154.3 \pm 1.5 \pm 14.3 \,\mu b$ $\sigma(pp \to D^0X)^{13\text{TeV}} = 2072 \pm 2 \pm 124 \,\mu b$ [PRL 118 (2017) 052002]
[JHEP 05 (2017) 074]

See talk from M. Gersabeck for details of charm CPV/mixing with these huge data samples

~800 authors and > 400 papers

LHCb data sample

Most results here from Run I only

Make use of real-time alignment and calibration to allow analysis straight from the trigger Major step towards realising upgrade trigger strategy [J. Phys. Conf. Ser. 664 (2015) 082010]

Rare decays (BR \$ 10-7)

Test lepton-flavour universality by comparing muon and electron modes

Effective Hamiltonian for b → s transitions

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \left[\underbrace{C_i(\mu) O_i(\mu)}_{\text{left-handed part}} + \underbrace{C_i'(\mu) O_i'(\mu)}_{\text{right-handed part}} \right]$$

$$i = 1,2$$
 Tree
 $i = 3 - 6,8$ Gluon penguin
 $i = 7$ Photon penguin
 $i = 9,10$ Electroweak penguin
 $i = S$ Higgs (scalar) penguin
 $i = P$ Pseudoscalar penguin

Oi operators: long-distance (non-perturbative) matrix elements, e.g. from lattice QCD

New physics can modify coeffs and/or add new operators

Testing lepton-flavour universality

 $R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))}$

O(1%) uncertainty on SM predictions

▲ BIP ▼ CDHMV EOS

[Bordone et al., EPJC 76 (2016)] [arXiv:1510.04239, 1605.03156, 1701.08672] [arXiv:1610.08761, https://eos.github.io] • flav.io [arXiv:1503.05534, 1703.09189, flav-io/flavio] [arXiv:1412.3183]

See talks: Chatzikonstantinidis, Glew and A. Lenz (next!)

Or is this QCD?

[Lyon and Zwicky, arXiv:1406.0566] [Altmannshofer and Straub arXiv:1503.06199] [Ciuchini et al., arXiv:1512.07157] [LHCb, EPJC (2017) 77]

 $Q_i != 0$ would be indication of new physics

Will hear more about these observables in the future

Angular analysis of $B^0 \to K*\ell^+\ell^-$ [JHEP 02 (2016) 104, ATLAS-CONF-2017-023, arXiv:1710.02846, PRL 118 (2017) 111801]

15

Or is this QCD?

[Lyon and Zwicky, arXiv:1406.0566] [Altmannshofer and Straub arXiv:1503.06199] [Ciuchini et al., arXiv:1512.07157] [LHCb, EPJC (2017) 77]

 $Q_i != 0$ would be indication of new physics

Will hear more about these observables in the future

Consistent picture forming?

Fit \mathcal{H}_{eff} to ~170 LFUV, P5', BRs... observables \rightarrow NP in $\mathbb{C}^{NP_{9\mu}}$ only (OR $\mathbb{C}^{NP_{9\mu}} = -\mathbb{C}^{NP_{10\mu}}$ OR $\mathbb{C}^{NP_{9\mu}} = -\mathbb{C}^{NP_{10\mu}}$)

Limits from direct searches providing complementary information to b meson decays, but may be able to escape bounds with more elaborate models or fine tuning [Crivellin et al., arXiv:1703.09226]

x2 data from LHCb now being analysed...

LFUV in b - clu

transitions

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\tau^-\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\mu^-\overline{\nu}_{\mu})}$$

$$\mathcal{R}(D^*)^{\text{muonic}} = 0.336 \pm 0.027 \pm 0.030$$

[PRL 115 (2015) 111803]
[arXiv:1708.08856]

$$\mathcal{R}(D^*)^{\text{hadronic}} = 0.286 \pm 0.019 \pm 0.025 \pm 0.021 \begin{bmatrix} \text{[arXiv:1708.08856]} \\ \text{[arXiv:1711.02505]} \end{bmatrix}$$

Systematically limited due to size of simulation samples for bkg templates

Missing neutrino(s) → no narrow peak to fit

Background from partially reconstructed decays

LFUV in b -> clu

transitions

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\tau^{-}\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\mu^{-}\overline{\nu}_{\mu})}$$

$$\mathcal{R}(D^*)$$
 muonic = 0.336 ± 0.027 ± 0.030 [PRL 115 (2015) 111803]
 $\mathcal{R}(D^*)$ hadronic = 0.286 ± 0.019 ± 0.025 ± 0.021 [arXiv:1708.08856] [arXiv:1711.02505]

Missing neutrino(s) → no narrow peak to fit

Background from partially reconstructed decays

LFUV in b -> c ev transitions

All measurements above SM: $R(D^*)$ - 3.4 σ , R(D) - 2.3 σ Updates to the SM prediction for $R(D^*)$ slightly reduce the tension [arXiv:1703.05330, 1707.09509, 1707.09977]

~3% effect from QED, in simulation? [arXiv:1803.05881]

[arXiv:1711:05623]

First evidence (3 σ) for $B_c \rightarrow J/\psi \tau \upsilon$

 $\mathcal{R}(J/\psi) = 0.71 \pm 0.17 \pm 0.18 \rightarrow 2\sigma \text{ above SM}$ [PLB 452 (1999) 129][arXiv:0211021]
prediction [PRD 73 (2006) 054024][PRD 74 (2006) 074008]

Short B_c lifetime (~0.5 ps) separates signal from other b-hadrons (~1.5 ps)

Next steps: measure $R(\Lambda_c(*))$, $R(D_s(*))$...

Rare kaon decays

[2017 JINST 12 P05025]

Search for $K^+ \to \pi^+ \nu \bar{\nu}$, rare/forbidden decays and exotic processes

[PLB 778 (2018) 137]

ໂດ 🗱 searching for $K_L \to \pi^0 \nu \bar{\nu}$, currently taking data

Search for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Theoretically clean s → d FCNC process (dominated by short distance)

[Brod et al., PRD 83, 034030 (2011)]
[Buras et al., JHEP 11 (2015) 033]

$$BR(K^+ \to \pi^+ \upsilon \bar{\upsilon})^{SM} = (8.4 \pm 1.0) \times 10^{-11}$$

Sensitive probe of BSM models (SUSY, Z'...)

[Buras et al., JHEP 11 (2015) 166]

Detector timing ($\sigma_t \sim 100$ ps) and background suppression are key ($\sigma(m^2_{miss}) \sim 10^{-3}$ GeV²)

Decay in flight technique

K⁺ decay events in the fiducial decay region NA62 Preliminary 10^{4} $K^+ \longrightarrow \pi^+ \pi^+ \pi^-$ BR=0.0558 10^{3} 0.05 $K^+ \rightarrow \pi^+ \pi^0$ BR=0.2066 10^{2} $K^+ \rightarrow \mu^+ \nu$ 10 -0.05

$$m^2_{miss} = (p_K - p_{\pi})^2$$

 $p_{\pi^{+}}$ [GeV/c]

NA62 results

https://indico.in2p3.fr/event/16579/contributions/60808/attachments/47182/59257/Moriond_rmarchev.pdf

Process	Expected events in $R1 + R2$
$K^+ \to \pi^+ \nu \overline{\nu} \text{ (SM)}$	$0.267 \pm 0.001_{stat} \pm 0.029_{syst} \pm 0.032_{ext}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu_\mu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+\pi^-\pi^+$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream background	$0.050^{+0.090}_{-0.030}$
Total background	$0.15 \pm 0.09_{stat} \pm 0.01_{syst}$

BR(K+ $\rightarrow \pi^+ \nu \bar{\nu}$) < 140 x 10-11 @ 95% CL. Consistent with SM and E949@BNL [PRL 101 (2008) 191802]

Data from 2017 now being analysed \rightarrow x20 increase!

2018 data-taking being prepared → 20 SM events expected

The CKM mechanism

$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} \, V_{\text{us}} \, V_{\text{ub}} \\ V_{\text{cd}} \, V_{\text{cs}} \, V_{\text{cb}} \\ V_{\text{td}} \, V_{\text{ts}} \, V_{\text{tb}} \end{pmatrix} \; \cong \; \begin{pmatrix} 0.97 & 0.23 & 0.0037 \cdot e^{-i\gamma} \\ -0.23 & 0.97 & 0.042 \\ 0.0087 \cdot e^{-i\beta} \, -0.041 & 0.9991 \end{pmatrix}$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Huge programme of experimental, theoretical and Lattice QCD calculations e.g., [Fermilab-MILC, PRD 93 (2016) 113016] Measurement consistency tests the SM and provide model-independent constraints on New Physics

SM working well, but still room for 10-20% NP contributions → More precision!

Neutral meson oscillations

$$|B_{\rm L,H}^0\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle$$

$$\operatorname{Prob}(B^0 \to \overline{B}^0) = \frac{\Gamma e^{-\Gamma t}}{2} [\cosh(\Delta \Gamma/2t) - \cos(\Delta mt)] |q/p|^2$$

+ similar equations for other mixing probabilities

Same description for **charm system**, but mixing frequency much **smaller** due to no top quarks in the loop

$$\Delta m \equiv (m_H-m_L)$$
 Mixing frequency $\Gamma \equiv (\Gamma_L+\Gamma_H)/2$ Average width $\Delta \Gamma \equiv \Gamma_L-\Gamma_H$ Width difference

[HFLAV]

 $\Delta m_s = 17.757 \pm 0.021/ps$ is 1.8 σ below SM prediction. [Luzio et al., arXiv:1712.06572] [See talk from A. Lenz]

Neutral meson oscillations

$$|B_{\mathrm{L},\mathrm{H}}^{0}\rangle = p|B^{0}\rangle \pm q|\overline{B}^{0}\rangle$$

$$\text{Prob}(B^0 \to \overline{B}^0) = \frac{\Gamma e^{-\Gamma t}}{2} [\cosh(\Delta \Gamma/2t) - \cos(\Delta mt)] |q/p|^2$$

+ similar equations for other mixing probabilities

Same description for **charm system**, but mixing frequency much **smaller** due to no top quarks in the loop

$$\Delta m \equiv (m_H-m_L)$$
 Mixing frequency $\Gamma \equiv (\Gamma_L+\Gamma_H)/2$ Average width $\Delta \Gamma \equiv \Gamma_L-\Gamma_H$ Width difference

[HFLAV]

 $\Delta m_s = 17.757 \pm 0.021/ps$ is 1.8 σ below SM prediction. [Luzio et al., arXiv:1712.06572] [See talk from A. Lenz]

CPV in B_s mixing + decay

 $B_s^0 \rightarrow J/\psi \phi$ is the golden mode for measuring ϕ_s

Dominated by b → ccs tree diagram

$$\phi_s \stackrel{\mathrm{SM}}{=} -2 \arg \left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) \equiv -2\beta_s$$

$$\phi_s$$
SM = -36.5 ± 1.3 mrad [CKMFitter]

2 vector particles in final state so use angular analysis to separate CP-odd/ even components

$$CP|J/\psi\phi\rangle_{\ell} = (-1)^{\ell}|J/\psi\phi\rangle_{\ell}$$

ϕ_s - $\Delta\Gamma_s$ global combination

LHCb:

- **J/**ψφ [PRL114, 041801 (2015)]
- $J/\psi K^+K^-$ [arXiv:1704.08217 (2017)]
- $J/\psi \pi^+ \pi^-$ [Phys. Lett. B736, (2014) 186]
- $\psi(2S)$ $\psi(2S)$ [Phys. Lett. B762 (2016) 253-262]
- $D_s^+D_s^-$ [PRL113, 211801 (2014)]

CMS:

J/ψφ [Phys. Lett. B 757 (2016) 97]

ATLAS:

J/ψφ [JHEP 08 (2016) 147]

New physics is not large, so we need increased precision

Important to control size of the penguin diagram contributions

[Faller et al., PRD 79 (2009) 014030]
[Jung, PRD 86 (2012) 053008]
[De Bruyn, Fleischer, JHEP 03 (2015) 145]
[Frings et al., PRL 115 (2015) 061802]
[LHCb, PLB 742 (2015) 38]

φs from loop-dominated Bs⁰ decays

Measure CPV phase in $B_s^0 \to K^+\pi^-K^-\pi^+$ and $B_s^0 \to \phi\phi \to KKKK$. Compare to $B_s^0 \to J/\psi\phi$

Use excellent hadron-PID for bkg suppression

Very rich structure of interfering scalar/vector/tensor $K\pi$ resonances in $B_s^0 \to K^+\pi^-K^-\pi^+$

 $\phi_s^{dd} = -0.10 \pm 0.13 \pm 0.14 \text{ rad}$ $\phi_s^{s\overline{s}} = -0.06 \pm 0.13 \pm 0.03 \text{ rad}$

[arXiv:1712.08683] [LHCb-CONF-2018-001]

φs from loop-dominated Bs⁰ decays

Measure CPV phase in $B_s^0 \to K^+\pi^-K^-\pi^+$ and $B_s^0 \to \phi\phi \to KKKK$. Compare to $B_s^0 \to J/\psi\phi$

Use excellent hadron-PID for bkg suppression

Very rich structure of interfering scalar/vector tensor $K\pi$ resonances in $B_s^0 \to K^+\pi^-K^-\pi^+$

 $\phi_s^{dd} = -0.10 \pm 0.13 \pm 0.14 \text{ rad}$ $\phi_s^{s\overline{s}} = -0.06 \pm 0.13 \pm 0.03 \text{ rad}$

[arXiv:1712.08683] [LHCb-CONF-2018-001]

CKM angle y

$$\gamma = arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

Only CP-violating parameter that can be measured from tree-level decay $|\delta\gamma| \leq O(10^{-7})$

[Brod, Zupan JHEP 1401 (2014) 051]

Exploit interference between two tree-level amplitudes to same final state

$$A_{CP} = \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to f)}{\Gamma(B \to f) + \Gamma(\overline{B} \to f)} \sim r_B \sin \delta_B \sin \gamma$$

GLW (
$$f_D = K^+K^-, \pi^+\pi^-$$
) [PLB 253 (1991) 483, PLB 265 (1991) 172]

ADS (
$$f_D = K\pi$$
) [PRL 78 (1997) 3257]

GGSZ (
$$f_D = K_S \pi^+ \pi^-$$
) [PRD 68 (2003) 054018]

Model-independent ADS+GGSZ approaches uses strong-phase measurements from CLEO, BES-III as input

$B^{\pm} \rightarrow D^{0}K^{\pm}, D^{0}\pi^{\pm}$

CKM angle y

 $B_s^0 \rightarrow D^0 K^{\pm} \pi^{\mp}$

 $(+ \Lambda_b \rightarrow \Lambda_c h^{\pm} \text{ in } D^0 \rightarrow KK)$

y combination

Use several B → DK measurements (85 observables, 37 parameters)

Many more Run-2 updates and channels expected soon

Expect O(I°) precision after LHCb upgrade

	B decay	D decay	Method	Ref.	Status since last combination []HEP 12 (2
	$B^+ o DK^+$	$D \rightarrow h^+ h^-$	GLW	[16]	Updated to Run 1 + $2 \mathrm{fb}^{-1} \mathrm{Run} 2$
	$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[17]	As before
→	$B^+ o DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[17]	As before
	$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[18]	As before
	$B^+ o DK^+$	$D o K_{\scriptscriptstyle { m S}}^0 h^+ h^-$	GGSZ	[19]	As before
	$B^+ \to DK^+$	$D \to K_{\rm \scriptscriptstyle S}^0 K^+ \pi^-$	GLS	[20]	As before
	$B^+ o D^*K^+$	$D \to h^+ h^-$	GLW	[16]	New
	$B^+ o DK^{*+}$	$D \to h^+ h^-$	GLW/ADS	[21]	New
backup	$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	GLW/ADS	[22]	As before
	$B^0 o DK^{*0}$	$D \to K^+ \pi^-$	ADS	[23]	As before
	$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	$\operatorname{GLW-Dalitz}$	[24]	As before
	$B^0 o DK^{*0}$	$D \to K_{\rm s}^0 \pi^+ \pi^-$	GGSZ	[25]	As before
backup	$B_s^0 o D_s^\mp K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[26]	Updated to $3\mathrm{fb}^{-1}$ Run 1
70					

New CPV measurements sensitive to $2\beta + \gamma$ or $-2\beta_s + \gamma$

•
$$B^0 \rightarrow D^{\mp}\pi^{\pm}$$
 [LHCb-PAPER-2018-009]

•
$$B_s^0 \to D_s^{\pm} K^{\pm}$$
 [JHEP 03 (2018) 059]

 3.8σ evidence for time-dep B_s^0 CPV

Doubly-charmed baryon, Ecc++

>120 significant signal observed consistent with a **weakly** decaying state link and many theory predictions e.g. Lattice [Alexandrou PRD 96 (2017) 034511]

$$m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.14 \text{ (Λ_c^+$)} \text{ MeV}$$

Quark-level analogue of nuclear fusion

The recent discovery of the first doubly charmed baryon...revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction $\Lambda_c\Lambda_c \rightarrow n\Xi_{cc}^{++}$, resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction...

At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

$X(5568)^{\pm} \rightarrow B_s \pi^{\pm}?$

~5 σ claim for *bsud* tetraquark/molecule, but difficult to explain when considering QCD chiral symmetry, heavy quark symmetry and threshold effects

[Liu, Li, arXiv:1603.04366]
[Burns, Swanson, arXiv:1603.04366]
[Guo et al, arXiv:1603.06316]

Large B_s production fraction: $\rho_X = (8.6 \pm 1.9 \pm 1.4)\%$

Not due to reflections from kaons/pions

No sign on the lattice [Lang et al., PRD 94 074509 (2016)]

Null searches for X(5568)[±]

Different kinematics (pT, $|\eta|$) for CDF vs D0?

 $p_{\rm T}(B_s^0) > 10 {\rm ~GeV}$

CMS

CDF

 ρ_X @ 95% CL

< 0.010

< 0.016

< 0.018

< 0.067

http://moriond.in2p3.fr/QCD/2018/ MondayMorning/Hirosky.pdf

The next ~20 years...

Install ATLAS/CMS phase 2 upgrades in LS3
34 Belle-II and BES-III complete ~2025

"New" experiments to take advantage of the HL-LHC

Status of Upgrade I

40 MHz readout, flexible software-only trigger at ~50 kHz

→ Factor 2 increase in efficiency for hadronic B decays (higher for charm, soft physics)

Status of Upgrade I

Significantly advanced production/ construction of many sub-systems

40 MHz read-out

First SciFi modules at LHCb

RICH MAPMTs in test beam

Microchannel VELO module mechanical deflection tests

UT sensor with **SALT** electronics connected to a stave

Belle-II @ Super-KEKb

Use nano-beams and 2x beam current for 40x luminosity $(2.1 \times 10^{34} \rightarrow 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1})$

Beam energies less asymmetric to give longer beam lifetime, but smaller boost ($\beta \gamma$: 0.42 \rightarrow 0.28)

Belle-II plan

Beast-II installed in the VXD volume to monitor backgrounds

Phase-II may open up some physics triggers, e.g., dark photons

Will achieve significantly improved precision on many CPV observables

Physics document:

https://confluence.desy.de/display/BI/B2TiP+ReportStatus

Aim for **complementarity** with LHCb (modes with neutrals, electrons, B \rightarrow η K⁰, LFV tau decays)

Belle-II: first cosmic events

First collisions expected next month!

Belle-II: first cosmic events

Upgrade II

Installation in LS4

Operation during Run 5 (2031-...)

 $L \sim 1-2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Target: 300 fb⁻¹

Looks similar to Upgrade I but substantial refit of existing sub-detectors

Challenges

Last week: 3rd workshop on LHCb upgrade-II https://indico.in2p3.fr/event/16795/overview

Summary

Intruiging tensions/anomalies with the SM in FCNC and tree-level decays ⇒ Consistent picture of NP emerging (Z', leptoquarks)?

Precision of tree and loop-level CPV rapidly increasing

⇒ Tighter constraints on CKM mechanism and probing of higher energy scales

New (exotic) states in the QCD spectrum continue to be found

Huge potential with LHC upgrades, Belle-II and kaon physics in coming years

@LHCb_UK
www.lhcb.ac.uk

More details in the parallel sessions and Marco's prize talk tomorrow

Measuring B meson oscillations (+ CPV)

Typical analysis requirements:

- Excellent decay-time resolution (~45 fs)
- Modelling decay-time efficiency
- Production + detection asymmetries
- Tagging of meson flavour @ production

Typical tagging power

- ~ 4% LHCb (J/ψ modes)
- ~ 8% LHCb (open-charm modes)
- ~1.5% ATLAS/CMS
- ~ 30% B-factories

CPV in $B_s \rightarrow D_s K^{\pm}$

[arXiv:1712.07428]

Both decay amplitudes are $O(\lambda^3)$ \rightarrow LARGE INTERFERENCE

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}^0 \to f} - \Gamma_{B^0 \to f}}{\Gamma_{\overline{B}^0 \to f} + \Gamma_{B^0 \to f}} = \frac{S_f \sin(\Delta m \, t) - C_f \cos(\Delta m \, t)}{\cosh(\Delta \Gamma \, t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma \, t/2)}$$

LHCb Preliminary LHCb Preliminary -0.2	
-0.4	-
0 0.1 0.2 0.3 τ modulo $(2\pi/\Delta m_s)$ [ps	-

Parameter	Value
C_f	$0.730 \pm 0.142 \pm 0.045$
$A_f^{\Delta\Gamma}$	$0.387 \pm 0.277 \pm 0.153$
$A^{\Delta\Gamma}_{\overline{f}}$	$0.308 \pm 0.275 \pm 0.152$
S_f^J	$-0.519 \pm 0.202 \pm 0.070$
$S_{\overline{f}}$	$-0.489 \pm 0.196 \pm 0.068$

CPV in B⁰ → D∓π[±]

Measurements are sensitive to $2\beta+\gamma$

Limited sensitive to γ since $r^{D\pi} \sim 0.02$, but huge event yields.

Measure Sf, Sfbar and use external input for $r^{D\pi}$ (Belle/BaBar) and β (HFLAV)

	$S_f[\%]$	$S_{ar{f}} \ [\%]$
Belle [11]	$6.8 \pm 2.9 \pm 1.2$	$3.1 \pm 3.0 \pm 1.2$
Babar [10]	$-2.3 \pm 4.8 \pm 1.4$	$4.3 \pm 4.8 \pm 1.4$
This analysis	$5.8\pm2.0\pm1.1$	$3.8 \pm 2.0 \pm 0.7$

Hadronic uncertainties

[Capdevilla et al., arXiv:1704.05340]

Coloured bands represent different NP scenarios

Size of band indicates size of hadronic uncertainty

In models with LFUV this gets larger as there is no long a cancellation for e/mu

