

The University Of Sheffield.

IOP APP/HEPP Bristol 2018: Latest results in the search for $H/A/Z' \rightarrow \tau^{-}\tau^{+}$

Theodore Zorbas (<u>t.zorbas@cern.ch</u>)

Monday 26th March 2018

Introduction and the 2HDM

- Analysis searching for heavy neutral resonances beyond the Standard Model (SM), produced in the ATLAS detector around CERN's Large Hadron Collider, decaying into a pair of tau leptons
 - Recent publication featuring 2015+2016 datasets, containing 36.1 fb⁻¹ of integrated luminosity [1]
- Mainly focus on searching for heavy Higgs' proposed by two-Higgs-doublet Model (2HDM) extensions of the SM [2]
 - Minimal Supersymmetric Standard Model (**MSSM**) facilitates such a 2HDM:

h: Light

H: Heavy

A: CP-odd

H[±]: Charged

Two benchmark scenarios assuming h mass is (or approximately) the same as SM Higgs:

<i>h</i> MSSM	$m_h = 125 \text{ GeV}$, the experimentally-observed value
<i>m_h</i> mod+	$m_h \simeq 125$ GeV, by tuning stop squark mixing parameter X_t

- Each Higgs doublet eigenstate, H_u and H_d , couple to isospin up- and down-type fermions
 - Benchmark models can be constrained by **two** parameters:

<i>m</i> _A	Mass of the A boson
tan β	Ratio of vacuum expectation values between H_u/H_d

www.particlezoo.net

Heavy neutral Higgs decays

- At high tan β (>10), neutral H/A couples more strongly to down-type fermions relative to SM Higgs, exclusively decaying to bb (~90%) and τ-τ+ (~10%)
 - **Di-tau** offers an albeit **rarer** but comparatively **cleaner** channel
- At **low** tan β , H/A couples strongly to **up**-type fermions, exclusively decaying to t \overline{t}

There is a small chance that H may decay into W-W+/ZZ/hh, while A may decay into hZ. These are enhanced to a few % (comparable to SM Higgs decay to ZZ) at low tan β for lower masses of H/A (<500 GeV) [3]

Additional SU(2) bosons

- Similarly to the 2HDM, there are models which propose additional SU(2) gauge groups, for example from Grand Unified Theories (GUT) [4]
 - Result in additional heavy Z' and W'* bosons

• Results may be interpreted in **two** benchmark scenarios:

SSM (Sequential Standard Model)	Couplings of Z' boson identical to those of SM Z boson
SFM / NU G(221) (Strong Flavour Model / Non-Universal G(221))	Z' favours coupling to third-generation fermions (ie. tau leptons) (possibly explains the large mass increase of the third-generation)

- SFM can be constrained by a $\sin^2 \phi$ mixing parameter between generations
 - For example, sin² φ < 0.5 corresponds to stronger coupling with third-generation fermions, for a TeV-scale Z' boson

University of Sheffield

Tau decay modes

- The tau (τ) is a third-generation charged lepton with mass 1.7768 GeV and lifetime 290 fs (relativistic decay length 87 μm) [5]
- Has **two** primary decay modes:
 - Leptonic (~35%): electron or muon (~17.5% each due to lepton universality)
 - Hadronic (~65%): mainly 1 charged pion, mostly likely with 1 additional neutral pion, sometimes additional charged/neutral pions (1- and 3-prong tracks)
 - Plus lepton number conserving neutrinos all round
- Hadronic taus are reconstructed as an isolated conical jet

The ATLAS detector

 CERN's Large Hadron Collider produces proton-proton collisions at 13 TeV centre-of-mass energy [6]

- Tau decay tracks are reconstructed in the Inner Detector
- Leptonic/Hadronic modes are identified from energy deposits in the Calorimeters

Production mechanisms

 For the heavy neutral Higgs search, we mainly focus on the b-associated production (bbH) and gluon-gluon fusion (ggH) mechanisms:

• For the **Z'** search, we focus on **Drell-Yann** production:

Theodore Zorbas

7

arXiv:1709.07242

Analysis sub-channels

 With resonances decaying back-to-back into a pair of taus, and each tau decaying leptonically/hadronically, our analysis is divided into two main sub-channels:

• Each sub-channel also considers **two** different **categories** of events:

b-tag	Event contains at least 1 bottom quark
b-veto	Event contains no bottom quarks

- **b-tag** category strongly synonymous with **bbH** production
- Use b-tagging algorithm with a **70% efficiency** working point

Channel event selection

LepHad

- Opposite charge taus
- 1 tau jet, 1 lepton
- Single lepton triggers (20-140 GeV)
- $\Delta \phi(\tau_1, \tau_2) > 2.4$ (back-to-back)
- Lepton p_T > 30 GeV
- Tau p_T > 25 GeV
- Tau ID "Medium" BDT working point
- e-had channel: $m(e,\tau_{had}) < 80$, $m(e,\tau_{had}) > 110$ GeV (avoid Z peak)
- $m_T < 40 \text{ GeV} (\text{suppresses W+jets})$ $m_T(\mathbf{p}_T^{\ell}, \mathbf{E}_T^{\text{miss}}) \equiv \sqrt{2p_T^{\ell} E_T^{\text{miss}} [1 - \cos \Delta \phi(\mathbf{p}_T^{\ell}, \mathbf{E}_T^{\text{miss}})]}$

BDT = Boosted Decision Tree

where **tighter** working points correspond to a **reducing** efficiency of **identification** but with an **increasing** factor of **rejection**

HadHad

- Opposite charge taus
- 2 tau jets, no leptons
- Single tau triggers (80/125/160 GeV)
- $\Delta \phi(\tau_1, \tau_2) > 2.7$ (back-to-back)

Leading tau (highest p_T):

- Matches single tau triggers
- p_T threshold per trigger +5 GeV (p_T > 85/130/165 GeV)
- Jet ID "Medium" BDT working point

Subleading tau:

- p_T > 65 GeV
- Jet ID "Loose" BDT working point

Background estimation: LepHad

Estimate τ_{had} misidentifications using fake factor methods for each sub-process f_X in each of their own fake regions X-FR (X \in [L, W, MJ]):

$$f_{\mathrm{X}} = rac{N_{\mathrm{data}}^{\mathrm{pass}} - N_{\mathrm{bkg}}^{\mathrm{pass}}}{N_{\mathrm{data}}^{\mathrm{fail}} - N_{\mathrm{bkg}}^{\mathrm{fail}}}\Big|_{\mathrm{X-FR}}$$

arXiv:1709.07242

LepHad fake factors

Theodore Zorbas

University of Sheffield

Background estimation: HadHad

- Mostly similar to LepHad
- Main backgrounds:
 - b-tag: Multijet and top
 - b-veto: Z→τ-τ+
- Backgrounds with true hadronic tau decays (top/Z) are directly estimated from MC simulation
- Multijet faking taus purely estimated from data using a similar fake factor technique to LepHad
- Other backgrounds with jets faking taus (W+jets and single top/ttbar) are estimated from MC simulation, but with a data-driven fake rate correction, measured in µv+jets events where the rate is defined as the ratio of probe jets passing loose ID to the total number of probe jets

Analysis strategy

 Distinguish SM background against BSM signal by observing results between data and MC prediction using the the total transverse mass of the di-tau system, m^{tot}:

$$m_{\mathrm{T}}^{\mathrm{tot}} \equiv \sqrt{(p_{\mathrm{T}}^{ au_{1}} + p_{\mathrm{T}}^{ au_{2}} + E_{\mathrm{T}}^{\mathrm{miss}})^{2} - (\mathbf{p}_{\mathrm{T}}^{ au_{1}} + \mathbf{p}_{\mathrm{T}}^{ au_{2}} + \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})^{2}}$$

- Reconstructed using **kinematics** rather than complex **algorithm** techniques
 - Previous studies have shown these have difficulty handling undetected neutrinos, thus providing no improvement to sensitivity

Results

- The discriminant total transverse mass represents a generic scan for new heavy resonances, without yet applying modelspecific interpretations
- Latest results show data are in agreement with the SM background, with no significant excess observed
- Apply exclusion limits in order to supply theorists with up-to-date constraints on the various models

arXiv:1709.07242

Theodore Zorbas

Exclusion limits

• Apply exclusion limits based on each of the production mechanisms:

Exclusion limits

- Also apply exclusion limits based on each of the model benchmark scenarios:
 - For **Higgs**:

Exclusion limits

- Also apply exclusion limits based on each of the model benchmark scenarios:
 - For **Z'**:

 As demonstrated, these have set record exclusion limits in our analysis, as well as significantly extending our sensitive mass range since previous publications

Future features

General improvements:

- Software upgrades in tau reconstruction, energy scale and identification
- Optimise event selection criteria
- Improve **trigger** menu
- Improve fake factor estimation techniques
- Studies improving **MC signal generators**

More specific studies:

- Include **2-prong** taus (3-prong decays only partially identified)
- Use a continuous tau ID with binned BDT efficiencies rather than fixed BDT working points
- Revisit using **discriminant mass algorithms** again
- Include a new **LepLep** channel (12% probability)
- Possibly extend our analysis to cover **more resonances**, such as charged Higgs and di-Higgs production (4-tau) relax the back-to-back tau criteria

Stay tuned!

Fortune-telling

- **Prospect** with dataset including **Run-3** luminosity by the end of **2023**
 - We are a flagship analysis channel in excluding much of the hMSSM parameter space, especially at high values of tan β
 - Compared to current results, expecting large improvements <1 TeV
 - Keen to see how other channels can **fill the gaps**!

References

- 1. ATLAS Collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb–1 of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 01 (2018) 055, arXiv:1709.07242 [hep-ex].
- 2. G. C. Branco et al., *Theory and phenomenology of two-Higgs-doublet models*, Phys. Rept. 516 (2012) 1, arXiv:1106.0034 [hep-ph].
- A. Djouadi et al., Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168, arXiv:1502.05653 [hep-ph].
- 4. M. Cvetic and S. Godfrey, *Discovery and identification of extra gauge bosons*, Adv. Ser. Direct. High Energy Phys. 16 (1995) 383, arXiv:hep-ph/9504216.
- 5. ATLAS Collaboration, *Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at* $\sqrt{s} = 13$ TeV, ATLAS-CONF-2017-029, 2017, <u>https://cds.cern.ch/record/2261772</u>.
- 6. ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST 3 (2008) S08003.

Thanks for listening!

Any questions?