Search for low mass dijet resonances in association with ISR at ATLAS

IOP Joint APP and HEPP Annual Conference / 28 March 2018

- Simplified models of Dark Matter (DM): DM particle χ and mediator Z', parametrised by g_q , g_{χ} , $m_{Z'}$, and m_{χ}
- If mediator couples to SM quarks ($g_q \neq 0$) it can be produced in *pp* collisions; can be probed by LHC experiments, e.g. ATLAS
- Can decay to DM pair (E_T^{miss} + recoil, X) or back to quarks (dijet)

• Existing ATLAS limits for **dijet**- and $E_T^{miss} + X$ searches, covering vast region of simplified model phase space

• Need **new approach** for lowest mediator masses (≤ 200 GeV)

- Dijet searches limited by jet trigger thresholds at low mediator masses (< 450 GeV)
- Search for hadronically decaying mediator (Z') produced in association with recoil jet or photon
- Initial state radiation (ISR) in context of signal model

Overview

- Search for generic low-mass leptophobic resonances Z'
- Trigger on recoil (ISR) jet or photon
- Reconstruct signal candidate as large-R jet ("boosted regime")
- Use jet substructure to distinguish Z' candidates from non-resonant jets
- First boosted dijet + ISR search in ATLAS
- Using 36 fb⁻¹ 13 TeV pp data

Boosted jets: Increasing transverse momentum, $p_{\rm T}$

• Recently public [1801.08769], submitted to Phys. Lett. B

Search backgrounds

- Dominant:
 - Jet ch.: QCD multijets
- Sub-dominant:
 - **Jet ch.:** *W*/*Z* + jets
- Photon ch.: γ + jets
 Photon ch.: Incl. W/Z + γ
- Sub-dominant backgrounds estimated from Monte Carlo simulation (Sherpa 2.1.1 LO + NLO cross-section correction)
- Dominant background estimated using data-driven approach, also used by CMS
- Jet substructure (τ_{21}) used to reduce leading backgrounds, perform background estimate
 - τ_{21} : Ratio of energy correlation functions, expressing "two-pronginess"

Substructure decorrelation

- Non-flat profile of τ_{21} wrt. $m_J \rightarrow cut sculpts m_J distribution$
- Need to remove correlation \rightarrow new variable τ_{21}^{DDT}
- Decorrelation enables robust data-driven background estimate

Background estimation

• Estimate background in search region as:

 $N_{\text{pass}}(p_{\text{T}}, \rho^{\text{DDT}}) = \text{TF}(p_{\text{T}}, \rho^{\text{DDT}}) \times N_{\text{fail}}(p_{\text{T}}, \rho^{\text{DDT}})$

Background estimation

- Signal region (SR):
 20% window in m_J around
 each m_{Z'} hypothesis
- Fit 2D TF histogram with Gaussian process (GP), interpolate from side-bands
- For each signal hypothesis: Unique signal region, background estimate

Figure from [<u>1705.10532</u>]

Validation on W/Z peak

- Full analysis chain validated on W/Z peak in data
- Best-fit signal strength $\hat{\mu}$ consistent with 1 in both channels

Discriminant distributions

• Large-*R* jet mass distributions in the jet (*left*) and photon (*right*) channel for $m_{Z'}$ = 220 GeV simulated signal mass point

Systematic uncertainties

- Search sensitivity dominated by TF systematic (ca. 90%)
 - Improve search → reduce this uncertainty → more uniform TF profile → better decorrelation procedure

Uncertainty source	$\Delta \mu / \mu ~ [\%]$ (← Impact on best-fit signal strength μ)		
	$m_{Z'} = 160 \text{ GeV}$	$m_{Z'} = 220 \text{ GeV}$	
Transfer factor	90	88	
Large- R jet	25	17	
Total systematic uncertainty	93	91	
Statistical uncertainty	10	11	

Cross-section limits

 Expected, observed 95% CL exclusion limits on cross-section times acceptance of Z' resonance as a function of the resonance mass m_{Z'} in jet (*left*) and photon (*right*) channel

Cross-section limits

 Expected, observed 95% CL exclusion limits on cross-section times acceptance of Z' resonance as a function of the resonance mass m_{Z'} in jet (*left*) and photon (*right*) channel

Coupling limits

 Expected, observed 95% CL exclusion limits on Z' coupling to SM quarks, g_q, as a function of the resonance mass m_{Z'} in separate (*left*) and combined (*right*) search channels

Conclusion

- First ATLAS search in boosted dijet + ISR final state presented
- Analysis uses novel substructure technique to reduce leading backgrounds, perform robust estimation in low-mass region
- Full analysis chain successfully validated on W/Z peak, result found to be consistent with SM predictions
- Limits placed on signal resonance production cross-section and coupling to SM quarks
- Future directions:
 - Flavour-tagging to reject background, probe $H(\rightarrow bb)$ + ISR
 - Improve decorrelation procedure and probe lower masses

Summary plot

Event selection

Jet channel

- Recoil object
 - anti- $k_t^{R=0.4}$ jet with $p_T > 420$ GeV
- Signal candidate
 - trimmed anti- $k_t^{R=1.0}$ jet with $p_T > 450 \text{ GeV}$
 - dR(j,J) > 1.0
- Topology
 - $\Delta \phi(j,J) > \pi/2$
 - $p_{T,J} > 2 \times m_J$

Photon channel

- Recoil object
 - tight, isolated photon with $p_T > 155 \text{ GeV}$
- Signal candidate
 - trimmed anti- $k_t^{R=1.0}$ jet with $p_T > 200 \text{ GeV}$
- Topology
 - Δφ(γ,J) > π/2
 - p_{T,J} > 2 × m_J

Background estimation / Cartoon

Gaussian process (GP) regression

Substructure decorrelation

• au_{21} substructure variable decorrelation, using DDT, in the photon channel

Discriminant distributions

• Large-*R* jet mass distributions in the jet (*left*) and photon (*right*) channel for $m_{Z'}$ = 160 GeV simulated signal mass point

• 95% CL exclusion regions in (σ_{DM-n} , m_{DM})-plane in context of the Z'-like simplified model with vector-axial couplings

 95% CL exclusion regions in (σ_{DM-n}, m_{DM})-plane in context of the Z'-like simplified model with vector-axial couplings

• 95% CL exclusion regions in (σ_{DM-p}, m_{DM}) -plane in context of the Z'-like simplified model with vector-axial couplings

• 95% CL exclusion regions in (σ_{DM-p}, m_{DM}) -plane in context of the Z'-like simplified model with vector-axial couplings

