

Inclusive Single Diffraction Measurement at ATLAS $\sqrt{s} = 8$ TeV

IOP – Joint APP & HEP Annual Conference – March 2018 Andrew Foster, University of Birmingham

Proton-Proton Cross-section

- At the LHC, we are probing the understanding of strong interaction in proton-proton collisions
 - Aids understanding of confinement, hadronic mass generation, cosmic ray air showers, pile up...

IOP HEPP & APP Meeting - 03/2018 - Andrew Foster

Diffraction

- Large cross sections, not well constrained
- Typified by large regions in rapidity in the final state devoid of outgoing particles
- Mediated by exchange of vacuum quantum numbers ('Pomeron')
- Bridges gap between soft and hard understandings of the strong interaction

Single Dissociation in ATLAS

- Measure σ_{SD} differentially in Mandelstam **t**, ξ and $\Delta \eta$
- · ξ can be calculated from proton (ξ_p) and X-system (ξ_{ID})

 $(\boldsymbol{\xi})$

р

- x

р

р

P

$$\xi = 1 - \frac{E_{p'}}{E_p} \quad , \quad \xi^{\pm}_{EP_z} = \frac{\Sigma_i(E_i \mp p_{z,i})}{\sqrt{s}}$$

$$t = (P_1 - P_3)^2 \approx -(p_T^{\text{scattered proton}})^2$$

IOP HEPP & APP Meeting - 03/2018 - Andrew Foster

The ALFA sub-detector

- ALFA (Absolute Luminosity For ATLAS)
- Roman Pot (RP) detector using scintillating fibres
- Situated ~240m down the beam from interaction point in both directions
- Used with special high β^* , parallel to point optics with low pile up
 - Provides access to scattering angle

Event selection

- L1_MBTS_2_A(C)_ALFA_C(A) triggers
- 1 'tagged' proton
- 5 MBTS counters above noise threshold (low trigger efficiencies below this)
- · \geq 1 track with $p_T > 200$ MeV

Minimum Bias Trigger Scintillators (MBTS)

Fiducial Region 0.016 < |t| < 0.43 GeV² -4.0 < log₁₀(ξ) < -1.6 (80 < M_X < 1270 GeV)

Data Driven Background

- ND, CD and DD modelled with MC
- Possible for **two separate overlaid processes** to produce **SD-like signal**
 - eg. ND + elastics/halo
- Random rate of protons measured in background dominated region
 - ~1% chance of one random proton overlaid on an event
 - Referred to as "Proton Overlay" in plots

Contributing Process	% of total
ND	99.273
SD	0.714
DD	0.012
CD	0.001

Composition of ND-enriched sample

Number of protons	Probability
0	0.9850
1	0.0077
2	0.0073
3	<0.0001
4	<0.0001

Probability of 'proton' in ALFA that is not directly linked to event

Control Plots

- Observe poor normalisation agreement
 - Good shape agreement
 - Stat. uncertainties only
- **Renormalise SD MC** to have measured cross section from this analysis (~8mb)

	Fraction of total
SD	70%
Proton Overlay	22%
CD	7%
DD	< 1%
ND	< 1%

Results t

- |t| unfolded to hadron level
- Data points plotted at **mean** of bin (due to non-flat shape of distribution)
- Fit accounts for correlation between uncertainties
- B = 7.55 ± 0.23 GeV⁻²
 - Dominant uncertainty is proton overlay background
 - $B_{(PYTHIA8 A2)} = 7.82 \text{ GeV}^{-2}$
 - B(pythias a3) = 7.10 GeV⁻²

Results ξ

- ξ_p and ξ_{Epz} unfolded to true ξ
- Observe very good agreement despite • very different backgrounds, systematics and unfolding matrices
- Fit using Regge theory predictions, ٠ where $\alpha(t) = \alpha(0) + \alpha't$
- Fits yield:

Distribution	< <i>t</i> >	$\alpha(< t >)$
Pythia8 A2 (SS)	-0.129	0.971 ± 0.001
Pythia8 A3 (DL)	-0.136	1.036 ± 0.000
Data(ALFA)	-0.1325	1.038 ± 0.028
Data(ID)	-0.1325	1.030 ± 0.020

 $\alpha' = 0.25 \text{GeV}^{-2}$ (DL⁽¹⁾), extract $\alpha(0)$

 1.063 ± 0.021

(1) Physics Letters B, vol. 296, no. 1, pp. 227 - 232, 1992

Using < t > = 0.13GeV² and

IOP HEPP & APP Meeting – 03/2018 – Andrew Foster

Data(ID)

Results σ_{SD}

- The cross section is measured within the **fiducial region**, 0.016 < |t| < 0.43 GeV², -4.0 < $\log_{10}(\xi) < -1.6$ (corresponding to 80 < $M_X < 1270$ GeV)
 - $\sigma_{SD}(fiducial) = 1.58 \pm 0.13 \text{ mb}$

•

٠

•

Using t slope from data, can **extrapolate to** $0 \le |t| \le \infty$,

- $\sigma_{SD}(all t, -4.0 < \log_{10}(\xi) < -1.6) = 1.86 \pm 0.16 \text{ mb}$
- As $\alpha(0)$ consistent with Pythia8 A3, can simplistically scale the Pythia8 A3 cross section by the normalisation factor observed within the measured range
- σ_{SD} = 7.8mb (uncertainty inestimable, due to very poorly constrained low and high ξ behaviour)

Distribution	$\sigma_{SD}^{\mathrm{fiducial}(\xi,t)}$ [mb]	$\sigma_{SD}^{\mathrm{fiducial}(\xi)}$ [mb]	σ_{SD} [mb]
Pythia8 A2 (SS)	3.69 ± 0.00	4.35 ± 0.00	12.48
Pythia8 A3 (DL)	2.52 ± 0.00	2.98 ± 0.00	12.48
Data	1.58 ± 0.13	1.86 ± 0.16	7.8

Summary

- Hadron level differential cross sections presented in |t| and $\boldsymbol{\xi}$
 - Measure a B slope of 7.55 \pm 0.18 GeV⁻² (PYTHIA8 A3 pred. 7.10 GeV⁻²)
 - Extract $\alpha(0)$ from **two measurements**, consistent with each other and PYTHIA8 A3

•

٠

- $\alpha(0)$ extracted from ξ dependence of SD consistent with that from s dependence of σ_{Tot} and σ_{el}
- SD normalisation lower than predicted by PYTHIA8

Systematic Uncertainties

IOP HEPP & APP Meeting – 03/2018 – Andrew Foster

2 proton control region

Analysis selection same as nominal but with two ALFA armlets requiring a proton

- Dominated by overlay of elastic scattering in ALFA and ND in the ID
- \cdot Used to evaluate systematic uncertainty on proton overlay background
- Observe good normalisation of overlay method

IOP HEPP & APP Meeting – 03/2018 – Andrew Foster

Systematic Uncertainty on Unfolding (|t|)

- MC re-weighted so that MC (reco) matches data. MC (truth) reweighted to same function
- MC (reco) unfolded using nominal response matrix

٠

•

•

Difference between MC (reco) and MC (truth) is the uncertainty

Systematic Uncertainties (ALFA Alignment)

- Used method (and alignment files) from **8TeV elastics** analysis
- **Three separate systematic variations considered**: horizontal, rotation and optimisation (using multiple variations for each method)
- Conservatively take the envelope for each of the systematics

Systematic Uncertainties (Cross-section)

- Background cross-sections **not well constrained**
- Following 7TeV rapidity gaps paper⁽¹⁾ method, vary ratio of σ_{DD}/σ_{SD} between the limits derived from CDF measurements of $\sigma_{SD}^{(3)}$ and $\sigma_{DD}^{(2)}$ extrapolated to the **full diffractive kinematic range** of PYTHIA8: 0.29 < σ_{DD}/σ_{SD} < 0.68
- Move σ_{CD} coherently with σ_{SD} , fixed at 9.3% of σ_{SD} and to extremities of CDF uncertainty
- Can vary σ_{DD}/σ_{SD} to the full range without the uncertainties becoming too large, since very little DD in sample.
- CD presents as kinematically similar to SD, thus relatively flat uncertainties ~2%

(1) https://arxiv.org/pdf/1201.2808.pdf

Comparison to 7TeV Gaps analysis

- Different gap definition
- DD included in 7TeV paper
- If removing DD, see similar over-estimation by PYTHIA8

