The Quest for New Physics with the ATLAS Multi-Jets Analysis

IOP HEPP / APP Conference Mike Nelson, University of Oxford

michael.nelson@physics.ox.ac.uk

Supersymmetry at the LHC

2

Dark

Energy

68.3%

A 'Slice' of ATLAS

What are we looking for ?

Common Selection Lepton veto Many central jets: $|\eta| < 2.0$ Key variable: MET-significance: $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ $H_{\rm T} = \sum p_{\rm T,jet}$

> **Two analysis streams** Flavour: select b-jets

MJSigma: makes use of jet reclustering R = 1.0

$$M_J^{\Sigma} = \sum_j m_j^{R=1.0}$$

Michael E. Nelson, Oxford

IOP, 2018

In reality ...

UNIVERSITY OF OXFORD

13-jet event reconstructed in the ATLAS calorimeter !

What obscures our signal ?

Split background into two categories:

Multi-jet

Fully hadronic *tt* —> Cannot be estimated with MC

"Leptonic"

Backgrounds producing a lepton (which escapes the veto we apply)

—> Can be estimated with MC Semi-leptonic *tt*

W + jets

Smaller backgrounds

QCD multijet event

Signal regions: select high MET significance

High Jet Multiplicity Signal Regions

Criterion	Heavy-flavour channel Jet mass channel		
Jet $ \eta $	< 2.0		
Jet $p_{\rm T}$ $N_{\rm jet}$	$\begin{vmatrix} >50 \text{ GeV} \\ \ge 8, 9, 10, 11 \end{vmatrix} > 80 \text{ GeV} > 50 \text{ GeV} \\ \ge 7, 8, 9 \end{vmatrix} > 50 \text{ GeV} \\ \ge 8, 9, 10 \end{vmatrix}$		
Lepton veto	No preselected e or μ after overlap removal		
<i>b</i> -jet selection Large-R-jet selection	$ \begin{array}{ c c c c c } p_{\rm T} > 50 \ {\rm GeV} \ {\rm and} \ \eta < 2.0 \\ p_{\rm T} > 100 \ {\rm GeV} \ {\rm and} \ \eta < 1.5 \end{array} $		
$\begin{array}{c} N_{b\text{-tag}} \\ M_{\text{J}}^{\Sigma} \end{array}$	$\begin{vmatrix} \ge 0, 1, 2 \\ \ge 0 \end{vmatrix} \qquad \begin{vmatrix} \ge 0 \\ \ge 340, 500 \text{GeV} \end{vmatrix}$		
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$> 5 {\rm GeV}^{1/2}$		

Signal regions (SRs) are constructed from 7, 8, 9, 10, and 11 inclusive jets (leptons vetoed). Two channels:

•"Heavy-flavour channel": 0, 1, and 2 inclusive *b*-jets are required.

Michael E. Nelson, Oxford

Ę

High Jet Multiplicity Signal Regions

	Criterion	Heavy-flavour channel	Jet mass channel	
	Jet $ \eta $	< 2.0		
	Jet $p_{\rm T}$	>50 GeV $ $ >80 GeV	$>50 { m GeV}$	
_	$N_{ m jet}$	$ \geq 8, 9, 10, 11 \geq 7, 8, 9$	$\geq 8, 9, 10$	
-	Lepton veto	$\begin{array}{ c c c c c } \hline & \text{No preselected e or μ after overlap removal} \\ \hline & p_{\mathrm{T}} > 50 \text{ GeV and } \eta < 2.0 \\ \hline & p_{\mathrm{T}} > 100 \text{ GeV and } \eta < 1.5 \\ \hline \end{array}$		
	b-jet selection			
C	Large-R-jet selection			
-	$N_{b-\mathrm{tag}}$	$\geq 0, 1, 2$	≥ 0	
_	$M_{\rm J}^{\Sigma}$	≥ 0	$\geq 340,500{ m GeV}$	
	$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$> 5 \mathrm{GeV}^{1/2}$		

Signal regions (SRs) are constructed from 7, 8, 9, 10, and 11 inclusive jets (leptons vetoed). Two channels:

• "Jet mass channel": Jets are reclustered into larger fat-jets, uses the total fat-jet mass per event $(M_J \Sigma)$.

Backgrounds and How to Control Them

Backgrounds and How to Control Them

11

CRs for two largest Monte Carlo backgrounds: *W* +jets and top production + jets, constructed by requiring zero and one inclusive *b*-jet respectively.

For each N_{jet} SR of jet multiplicity N_{jet} , an N_{jet} -1 CR is calculated for the *W*+jets and hadronic top backgrounds.

These CRs provide normalisations to the yields from the **largest MC backgrounds**.

Top CR

The Template Method

Fully data-driven multi-jet background estimation.

*E*_T^{miss} significance shape is **approximately invariant** under different (high) jet multiplicities.

Calculate the multi-jet contribution in the 6-jet, E_T^{miss} significance > 5 GeV^{1/2} template region.

Rescale the shape in each of the signal regions by considering the relative change in size of the multi-jet dominated peak at E_{T}^{miss} significance < 1.5 GeV^{1/2}.

The Template Method

The Template Method

SR

SR

SR

TR

*E*T^{miss} significance shape is **approximately invariant** under different (high) jet multiplicities.

Calculate the multi-jet contribution in the 6-jet, E_T^{miss} significance > 5 GeV^{1/2} template region.

Rescale the shape in each of the signal regions by considering the relative change METSig in size of the multi-jet dominated peak at *E*T^{miss} significance < 1.5 GeV^{1/2}.

5.0

Michael E. Nelson, Oxford

1.5

 n_i

TR

TR

TR

TR

10

9

8

6

Results with 36.1 fb⁻¹ (2015 + 2016)

Yields in each of the 27 signal regions — excellent data/(MC + template) prediction.

The signal yields in each SR using **2015 + 2016 LHC data**.

Smoking gun for this new physics search: large SR excesses at moderate E_T^{miss} significance coming from SUSY particle production.

No statistically significant excesses are observed — use this to understand sensitivity to existing SUSY models.

Sensitivity to RPC SUSY

95 % confidence level (CL) exclusion limits are set on different stronglyproduced SUSY models: three *R*-parity conserving (pMSSM above), and a fourth model which is *R*-parity violating (RPV).

Sensitivity to gluino masses extended up to 1.8 TeV.

Michael E. Nelson, Oxford

Sensitivity to RPC SUSY

95 % confidence level (CL) exclusion limits are set on different stronglyproduced SUSY models: three *R*-parity conserving (2-step above), and a fourth model which is *R*-parity violating (RPV).

Sensitivity to gluino masses extended up to 1.8 TeV.

Michael E. Nelson, Oxford

Sensitivity to RPV SUSY

other strong-SUSY-motivated analyses, which have an explicit E_{T}^{miss} cut, are not as sensitive to such RPV scenarios.

Summary JHEP12 (2017) 034

The **multi-jets analysis is a search for new physics**, motivated by the models of strongly-produced SUSY, where the final states could consist of many hadronic jets.

The search exploits techniques of *b*-tagging and jet reclustering in order to enhance the sensitivity to RPC SUSY.

The **non-zero real** E_{T}^{miss} provides sensitivity to RPV SUSY scenarios.

No statistically significant excesses (consistent by SUSY) have been observed in 36 fb⁻¹ of ATLAS data — the sensitivity to gluino mass has been **extended to 1.8 TeV**.

Backup

All Regions

Jet Multiplicity	Jet pT	b-jets / MJSigma		METSig	
==6	50 GeV	0+, 1+, 2+ / > 340, >500	< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
==7			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=8			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=9			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=10			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=11		0+, 1+, 2+	< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
==5	80 GeV	0+, 1+, 2+	< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
==6			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=7			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=8			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}
>=9			< 1.5 GeV ^{1/2}	1.5-4.0 GeV ^{1/2}	> 5 GeV ^{1/2}

Key: control regions, validation regions, signal regions

Michael E. Nelson, Oxford

27 SR in total!

IOP, 2018

Control Region Strategy

- ttbar and W+jets background are estimated in the SR with MC
- The prediction is then improved via a fit to dedicated control regions (CR)
- The CR select exactly 1 lepton, and have Njet 1 fewer than the corresponding Signal Region
- Extract scale factors to modify the background prediction in the SR
- mT cut to reduce signal contamination
- Other cuts the same or as close as possible to SR

Control regions

Trigger (50 GeVregions)	HLT_6j45_0eta240
Trigger (80 GeVregions)	HLT_5j70 HLT_5j65_0eta240
Lepton $p_{\rm T}$	> 20 GeV
Lepton multiplicity	Exactly one, $\ell \in e, \mu$
m_{T}	< 120 GeV
Jet $p_{\rm T}$	Same as SR
Jet $ \eta $	< 2.0
Number of jets including lepton	$N_{SR} - 1$
b-jet multiplicity	$= 0 (W) \text{ or } \geq 1 (t\overline{t})$
$M_{ m J}^{\Sigma}$	Same as SR
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$> 3, 4, 5 \text{ GeV}^{1/2}$

Systematics

- Normal detector and theory systematics are taken into account for the MC backgrounds
- For the multijet background estimate, three systematic uncertainties are calculated:
 - HT binning: A variation in the binning scheme
 - Closure systematic
 - Flavour systematic

Systematics

- Use the difference between the template prediction and the data in several validation regions:
 - bins of low METSig [1.5-2.0-3.0-4.0]
 - METSig > 5 at jet multiplicities 1 lower than the signal region
- For SR with njet=N, the systematic is the largest deviation in any of these VRs with njet≤N

Systematics

