

Search for the decay $B \to p \bar{p} \mu \nu$

MATTHEW TILLEY

March 26, 2018

Search for the decay $B \rightarrow p \bar{p} \mu \nu$

Lepton flavour universality in $b \rightarrow c \ell \nu$

- The combination of the ratios $R(D) = \mathcal{B}(B \to D\tau\nu)/\mathcal{B}(B \to D\mu\nu)$ and $R(D^*)$ are 4σ away from the Standard Model prediction
- There is also a measurement from LHCb of $R(J/\psi)$ where the central value is about 2σ from the theoretical prediction.

https://arxiv.org/pdf/1711.05623.pdf 👝 🧃 🛌 🛓 🛓 🛓 🛓

Lepton flavour universality in $b \rightarrow c \ell \nu$

- \bigcirc New physics could be hidden in this $b \to c \ell \nu$ transition. For example, leptoquarks
- $\, \odot \,$ If it is new physics it may also produce an effect in the suppressed $b \to u \ell \nu$
- These decays include $B \to \pi \ell \nu$ and $\Lambda_b \to p \ell \nu$, but are very difficult at LHCb!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Why $B \to p\overline{p}\ell\nu$?

$\, \odot \,$ At LHCb a candidate which is experimentally favourable is $B \to p \overline{p} \ell \nu$

- Proton identification is good with the LHCb RICH detector
- Other decays producing random protons mistakenly associated with a signal decay will be a much smaller problem than it would be with pions

Why $B \to p\overline{p}\ell\nu$?

- \bigcirc A major challenge is the missing neutrino. This becomes three neutrinos in the case where $\tau \rightarrow \mu \nu \nu$ is used. With $B \rightarrow p \overline{p} \tau \nu$ we can still reconstruct the *B* decay vertex.
- \bigcirc However, a theoretical prediction of $R(p\overline{p})$ is difficult
 - $\circ~$ A study of the decay $B \to p \overline{p} \mu \nu$ will be very useful for theorists!
- $\odot~B \to p \overline{p} \mu \nu$ is also interesting to study its own right
 - Threshold enhancement behaviour for $p\overline{p}$ seen in $B \to p\overline{p}K^{(*)}$ and $B \to p\overline{p}\pi$ arXiv:0706.4167

Previous studies of $B \to p \overline{p} \ell \nu$

- Belle found evidence for $B \to p\overline{p}e\nu$ (3.0 σ) and $B \to p\overline{p}\mu\nu$ (1.3 σ)
- \bigcirc A theoretical calculation by Geng et al. relies heavily on assumptions associated with the $p\overline{p}$ mass spectrum. These assumptions can be tested at LHCb

https://arxiv.org/pdf/1107.0801.pdf https://arxiv.org/pdf/1306.3353.pdf

Search for the decay $B \rightarrow p \bar{p} \mu \nu$

Semileptonic Analysis Strategies at ${\rm LHC}b$

- Due to the neutrino we cannot fully reconstruct the decay
- \odot Using the visible products we can apply a correction to the mass, $m_{\rm corr}\equiv |p_T'|+\sqrt{|p_T'|^2+m_{\rm vis}^2}$
 - This will peak at the B mass for the signal only and can help distinguish signal from backgrounds with additional missing particles

ヘロト ヘ戸ト ヘヨト ヘヨト

Semileptonic Analysis Strategies at ${\rm LHC}b$

- Charged Track Isolation is a method to remove partially reconstructed backgrounds where X is a set of particles which includes some charged tracks
- A machine learning algorithm is trained to remove events with charged tracks likely to be associated with the B decay vertex

MISIDENTIFICATION BACKGROUND

- \bigcirc A calibration sample can be used to assess the efficiency of identifying a particle track as a π , K, p or μ
- \bigcirc Using these efficiencies we can calculate the level and shape of misidentification background for $B \to p \overline{p} \mu \nu$

< ロ > < 同 > < 三 > < 三 >

MISIDENTIFICATION BACKGROUND

- This is done by taking a 'fake' sample where particle identification is not applied to one of the tracks
- The efficiencies can then be used to obtain the probability that and event would make up a misidentified background
- The 'fake' sample is then weighted by the probabilities. This provides a data driven determination of a major background

(ロ) (同) (ヨ) (ヨ)

BACKGROUND FROM COMBINATIONS OF MULTIPLE DECAYS

 For example, a background could come from two baryon decays

 $(\Lambda_b \to p \mu X) + (\overline{\Lambda_b} \to \overline{p} X)$

- A data sample with $pp\mu$ and $\overline{pp}\mu$ can help determine the shape of this background
- The component arising from misidentification is removed with the same unfolding procedure described previously

ヘロト ヘ戸ト ヘヨト ヘヨト

11 of 15

MAJOR EXCLUSIVE BACKGROUNDS

- \bigcirc Decays included in $B \to (\Lambda_c \to pX)\overline{p}\mu\nu$ and $B \to ([N^*/\Delta] \to pX)\overline{p}\mu\nu$ have not been observed and are a potentially large source of background
- These decays are simulated and the shape in corrected mass is extracted for a fit
- \odot Charged track isolation can reduce many of these backgrounds
- Additionally, a BDT is trained on the kinematics of the decays to remove these backgrounds

12 of 15

Expectation at LHCb for $B \to p \overline{p} \mu \nu$

- \bigcirc The result remains blind
- $\odot\,$ This is a simulation based on the branching fraction measured by Belle for $B \to p \overline{p} e \nu \approx 10^{-5}$
- The misidentification background level is set from data
- \bigcirc For the analysis this is split into bins of $p\overline{p}$ mass for a precision measurement of the $p\overline{p}$ mass spectrum
- \odot Expectation is far in excess of a 5 σ discovery

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

Study of $B \to p \overline{p} \tau \nu$

 \bigcirc Work is also ongoing on

 $R(p\overline{p}) = \mathcal{B}(B \to p\overline{p}\tau\nu)/\mathcal{B}(B \to p\overline{p}\mu\nu)$

○ A 3D fit similar to the study of $R(D^*)$ at LHCb will be used to extract the τ events

Search for the decay $B \rightarrow p \bar{p} \mu \nu$

CONCLUSION

- $\odot\,$ The branching fraction of the decay $B\to p\overline{p}\mu\nu$ will be measured at LHCb
- $\odot\,$ The $p\overline{p}$ mass spectrum will also be measured to provide theorists with experimental input
- \odot The measurement of the ratio of branching fractions $R(p\overline{p})$ is ongoing and will be a test of lepton universality in the $b\to u\ell\nu$ transition

Thank you for listening

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●