

UNIVERSITY^{OF} BIRMINGHAM

IOP joint HEPP and APP meeting Bristol, March 2018

Heavy neutral lepton searches at NA62

Lorenza Iacobuzio University of Birmingham

- The NA62 experiment at CERN
- Theoretical motivations for HNL searches
- HNL decay searches at NA62
- Conclusions and further work

The NA62 experiment at CERN SPS

- Fixed-target experiment at CERN SPS
- Run I (2016-2018): [see talk by A. Romano]
 - Measure BR($K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$) with 20% precision
 - Related to CKM matrix element V_{td}
 - $K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$: strongly suppressed FCNC and sensitive to New Physics
 - Besides $K^{*} \rightarrow \pi^{*} \nu \overline{\nu}$, broad physics programme performed in presence of K^{*} beam:
 - LFV/LNV processes
 - Hidden sector searches: axions, dark photons, heavy neutral leptons (HNLs) [this talk]
- Run II (2021++):
 - Possible continuation of $K^{_{+}} \rightarrow \pi^{_{+}} \nu \ \overline{\nu}$ data-taking
 - Opportunity to run in "beam-dump" mode to collect 10¹⁸ protons on target (POT) for hidden sector searches

The NA62 experiment at CERN SPS. The NA62 collaboration (about 200 participants): Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Merced, Moskow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC

The NA62 beam and experimental setup

P_K

- SPS 400 GeV/c protons on target (POT)
 - to produce secondary beam:
 - 6% K^+ , 70% π^+ , 24% p
 - 75 GeV/c momentum
 - 750 MHz of particles
 - In-flight-decay technique in fiducial volume (FV)
 - 5 MHz of K^+ decays in FV (105 m 180 m)
- Detectors:Particle ID and
 - tracking systems for upstream $K^{\scriptscriptstyle +}$ and downstream $\pi^{\scriptscriptstyle +}$
 - Veto systems for charged particles, photons and muons

3

[u] 2] **STRAW** LAV 1 -Target KTAG GTK Vacuum 0 SAC -1 Dump RĊ Decay Region -2 -LKr 100 150 200 250 Z [m] NA62 schematic layout. All detectors are visible

 $K^{*} \rightarrow \pi^{*} \nu \nu e vent topology$

 \mathbf{P}_{π}

P_v

 $\mathbf{P}_{\mathbf{v}}$

Theoretical framework for HNL searches

- ν MSM:
 - SM extension accounting for baryon asymmetry of the universe (BAU), dark matter (DM), neutrino masses and oscillations
 - 3 additional right-handed, singlet, Majorana HNLs (not observed yet)
 - See-saw mechanism to explain light SM neutrinos
 - Lightest HNL (about 10 keV) is good candidate for DM
 - Production and decay modes same as SM ones, scaled by coupling factor (U^2)
- Constrained ν MSM scenarios by Shaposhnikov [JHEP, 0710 (2007)]:
 - 4 free parameters: 1 active HNL mass (0.1-1 GeV) and 3 squared matrix elements $(U_e^2, U_{\mu}^2, U_{\tau}^2)$
 - $U^2 = U_e^2 + U_{\mu}^2 + U_{\tau}^2$
 - U^2 in range (10⁻⁹, 10⁻⁵)

νMSM particle zoology

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

PMNS mixing matrix between HNL flavour and mass eigenstates

$$U_{e}^{2}: U_{\mu}^{2}: U_{\tau}^{2} = 52:1:1(I)$$

$$U_{e}^{2}: U_{\mu}^{2}: U_{\tau}^{2} = 1:16:3.8(II)$$

$$U_{e}^{2}: U_{\mu}^{2}: U_{\tau}^{2} = 0.061:1:4.3(III)$$

Constrained scenarios of the ν MSM by Shaposhnikov

Experimental techniques

- Production searches:
 - Look for peaks in squared missing mass distribution
 - Decay-model independent → sensitive to long-lived HNLs
 - $\pi^+ \rightarrow e^+ \nu_e$ (TRIUMF): $m^2 = (P_\pi - P_e)^2$
 - $K^{+} \rightarrow \mu^{+} \nu_{\mu}$ (NA62, KEK, E949): $m^{2} = (P_{K} - P_{\mu})^{2}$
 - No HNLs observed \rightarrow upper limits (UL) on U^2 as $f(m_N)$
- Decay searches:
 - Coupling- and decay-model dependent \rightarrow sensitive to short-lived HNLs
 - $N \rightarrow e \mu \nu_e$ (PS191), $N \rightarrow 1^+ 1^- \nu_1$, $N \rightarrow 1^- 1^{'+} \nu_1$ (CHARM)
 - PS191 excluded region allowed by BAU

[Gninenko, Gorbunov, Shaposhnikov: 10.1155:718259 (2012)]

Past and future HNL searches (production and decay), at 90% CL exclusion limit

[Alekhin et al., Rept. Prog. Phys. 79 (2016) no.12, 124201]

Lorenza Iacobuzio, University of Birmingham

HNL searches and prospects at NA62

- First NA62 physics result on search for HNL production in $K^{+} \rightarrow 1^{+} \nu_{\perp}$ decays [Phys. Lett. B 778 (2018) 137-145] [see talk by V. Duk]
- Sensitivity study in view of NA62 "beam-dump" mode (2021++)
- Study $p + Be \rightarrow D \rightarrow N \rightarrow \pi \mu$
- Dominant production/decay contribution \rightarrow explore mass range (0.25, 1.9) GeV
- Signal signature:
 - Displaced 2-track vertex, mother trajectory pointing to target, 1 track in muon detector

Lorenza Iacobuzio, University of Birmingham

IOP joint HEPP-APP

6

HNL production and decay

- Complete
 phenomenology study
 of HNL production and
 decay modes
- Fully integrated in NA62 MC
- Coupling-independent MC simulation allows to study scenarios and expected UL on U^2 as $f(m_N)$
- BRs shown depend on U^2 assumptions

Lorenza Iacobuzio, University of Birmingham

MonteCarlo simulation - I

- Signal acceptance boosted through regeneration process:
 - If $\pi \mu$ final state not in charged hodoscope geometric acceptance \rightarrow HNL regenerated from scratch, all HNL info stored for analysis purposes, $\pi \mu$ final state discarded
 - Regeneration proccess occurs about 10³ times for each MC event

8

MonteCarlo simulation - II

- Probability for HNL to reach and decay in FV (ε)
 - $m_{_N}$ = 1 GeV \rightarrow $\tau_{_{mean}}$ \approx 10⁻⁶ s \rightarrow $\tau_{_{1ab}}$ \approx 10⁻⁵ s \rightarrow ε \approx 10⁻²

Analysis strategy - I

- Select $\pi \mu$ reconstructed final states in presence of K^{+} beam:
 - 2-track events, geometric acceptance from tracker to muon detector
 - Opposite-charged tracks forming a decay vertex
 - Used closest distance of approach method (CDA < 1 cm)
 - Vertex in FV, displaced
 from K⁺ beamline (> 10 cm)
 - Mother trajectory pointing back to target (remove combinatorial background)
 - Expect to keep background under control

Reconstructed MC tracks ($m_N = 1$ GeV, $U^2 = 10^{-6}$, muon-dominant scenario)

Lorenza Iacobuzio, University of Birmingham

Analysis strategy - II

- Select $\pi \mu$ reconstructed final states in presence of K^+ beam:
 - Particle ID through E/p in EM calorimeter
 - 1 track associated to muon
 - No additional activity in photon/charged-particle veto detectors

Lorenza Iacobuzio, University of Birmingham

Goals and expected sensitivity

- Goals:
 - Compute NA62 expected sensitivity to $N \rightarrow \pi \mu$ decays as $f(U^2, m_N)$
 - Set upper limits on U^2 as $f(m_N)$
 - Expected to be competitive with 10^{18} POT

- First results:
 - Leptonic, two-body *D* decays considered
 - $m_N = 1$ GeV and $U^2 = 10^{-6}$, muon-dominant scenario by Shaposhnikov
 - Assuming 10¹⁸ POT: 0.56 ± 0.12 expected signal events
 - Conservative: number of expected signal events 3-5 times higher when considering all HNL production modes and additional production in final collimator

Conclusions and further work

- Conclusions:
 - NA62 suited for hidden sector searches in presence of K^+ beam
 - HNL decay searches to $\pi \mu$ final states being performed in view of NA62 "beam-dump" mode (2021++)
 - Set upper limits on HNL coupling to SM leptons as function of HNL mass

- Further work:
 - Consider all HNL production modes
 - Thorough background studies to $N \rightarrow \pi \mu$ decays
 - Analysis of 2016-2018 data collected in presence of K^+ beam

Spares

Lorenza Iacobuzio, University of Birmingham IOP joint HEPP-APP

NA62 in "beam-dump" mode

- Target can be moved away from beam
- Beam let impinging on Cu final collimator (TAXs), acting as dump
- HNLs, dark photons, and axions originated from D, B, γ produced in p interactions with dump
- Already in beam mode about 40% of p do not interact with target and are dumped onto TAXs

Lorenza Iacobuzio, University of Birmingham

in

Expected sensitivity in "beam-dump" mode

- Assuming 10¹⁸ POT
- Fully reconstructed 2-track final states
- All HNL decays, close and open channels
- Assume zero-background
- Evaluate expected 90% CL exclusion plots

Lorenza Iacobuzio, University of Birmingham