

Relative Branching Fraction Measurements of $B \rightarrow 3h$ Decays

Cayo Costa Sobral, on behalf of the LHCb collaboration University of Warwick

Outline

- The LHCb detector
- Charmless $B \rightarrow 3h$ decays
- Relative BF measurement:
 - Analysis strategy
 - Event selection
 - Preliminary Run 1 results
 - Plan for completion

IOP APP/HEPP Conference 2018, 27/03/2018

Charmless $B \rightarrow 3h$ decays

- Tree-level $b \rightarrow u$ amplitudes have comparable size to loop-level $b \rightarrow d, s$ contributions
 - Amplitudes can interfere leading to large CP violation effects
 - New Physics can contribute to loops extra CPV sources
- Decays of a spin-0 particle to three spin-0 particles can be described by the **Dalitz plot** (DP)
 - Can be used to study resonant structures + CP violation effects in this type of decay
 - DP analyses can extract, in principle, all observable information about the decay:
 - Usually measure fit fractions (FF) and A_{CP}
 - $\blacksquare BF(B \to Rh) = BF(B \to h'h''h) \cdot FF_R$

Charmless $B \rightarrow 3h$ decays

- Previous LHCb analysis measured A_{CP} :
 - Model-independent no info on contributing resonances
 - Non-zero inclusive A_{CP} ranging $[2.8 5.6]\sigma$
 - Areas of phase space where large A_{CP} observed
- Next steps:
 - Amplitude analyses (AA) of each individual mode
 - $B \rightarrow 3h$ relative BF measurements (this talk)
- This analysis:
 - Improved BF measurement + fit fractions from AAs
 - BFs for resonant contributions
 - Improve on previous event selection:
 - Include new information isolation variables
 - Establish Run 2 optimisation

$A_{CP}(B^{\pm} \to K^+ K^+ K^-) = -0.036 \pm 0.004 \pm 0.002 \pm 0.007$
$A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$
$A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.025 \pm 0.004 \pm 0.004 \pm 0.007$
$A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.058 \pm 0.008 \pm 0.009 \pm 0.007$

Analysis strategy

- Measure $B \rightarrow 3h$ BF, relative to $B \rightarrow KKK$
 - Plan to also report ratios relative to the other modes
- Use 2011+2012 (Run 1) and 2015+2016 (Run 2) data
- Treat the two runs separately:
 - Independent selection optimisation
 - Determine ratios separately
 - Combine results once ratios+uncertainties calculated

PID selection

- Mis-identified $B \rightarrow 3h$ are important backgrounds
- Optimise PID on these cross-feed backgrounds only
- Use circular cuts in PID parameter space

- Kaons:
$$\sqrt{p_{\text{kaon}}^2 + (p_{\text{pion}} - 1)^2} > r_K^2$$

- Pions:
$$\sqrt{p_{\rm kaon}^2 + (p_{\rm pion} - 1)^2} < r_{\pi}^2$$

- For kaons, also require $p_{\rm kaon} > 0.02$
- Impose the constraint $r_K^2 \ge r_\pi^2$
- Optimise cut with the Figure of Merit (FoM):

- FoM =
$$\frac{\epsilon_{\text{sig}}}{\sqrt{\epsilon_{\text{sig}} + \sum f \cdot \epsilon_{\text{misID}}}}$$

$$f = BF_{misID}/BF_{sig}$$

Channel	misID considered
KKK	πΚΚ, Κππ
πKK	ΚΚΚ, Κππ
Κππ	πΚΚ, πππ
πππ	Κππ

MVA selection + vetoes

- Use multivariate analysis (MVA) to reduce combinatorial background
 - Neural network using the NeuroBayes algorithm
 - Train using Monte Carlo (MC) sample for signal, high-mass sideband data for background
 - Combination of 7 kinematical+topological input variables
 - Use πKK MC+data to maximise sensitivity to this mode
- Exclude charmed contributions through a veto
 - Veto region [1830,1890] MeV/ c^2 , centred on D^0 mass
 - Also see misID charm contributions
 - Apply tighter PID cuts rather than vetoes in this case

Square Dalitz plot

- Most signal is concentrated along the edges of DP
- Rapid efficiency variation in these regions
- Square DP transformation spreads out these areas

$$m' = \frac{1}{\pi} \arccos\left(2\frac{m_{ij} - (m_i + m_j)}{m_B - (m_i + m_j + m_k)} - 1\right),$$

$$\theta' = \frac{1}{\pi}\left(\frac{m_{ij}^2(m_{jk}^2 - m_{ij}^2) - (m_j^2 - m_i^2)(m_B^2 - m_k^2)}{\sqrt{(m_{ij}^2 + m_i^2 - m_j^2)^2 - 4m_{ij}^2m_i^2}\sqrt{(m_B^2 - m_k^2 - m_i^2)^2 - 4m_{ij}^2m_k^2}}\right).$$

Efficiencies

- Event selection can favour certain areas of the phase space over others
 - Must correct this by calculating selection efficiency as function of DP
- PID efficiencies are obtained through datadriven method
- Geometric + selection efficiencies calculated from MC

Channel	$\epsilon^{\rm sel+geom}~(\%)$	ϵ^{PID} (%)	ϵ^{tot} (%)
KKK	0.9205 ± 0.0007	76.86 ± 0.17	0.7075 ± 0.0016
ΚπΚ	0.8841 ± 0.0007	58.58 ± 0.16	0.5179 ± 0.0015
Κππ	0.8637 ± 0.0007	67.65 ± 0.16	0.5843 ± 0.0015
πππ	0.8137 ± 0.0007	72.49 ± 0.17	0.5898 ± 0.0014

-_⊕ 0.5⊺

0.45

KKK

LHCb unofficial

*statistical uncertainties only

0.01

0.009

Fit model

- Signal modes Double Crystal Ball (DCB):
 - Tail parameters fixed to MC fit
 - Width in data fit = width from MC (fixed) × scale parameter (floating)
 - Peak position floats in data fit shared between the four modes
- Cross-feed modes DCB:
 - Reweighted according to physical DP distribution
 - Peak position and tail parameters fixed to MC fit
- Combinatorial exponential
- Partially reconstructed ARGUS \otimes Gaussian:
 - Include one PDF for $B^+, B^0 \rightarrow 4$ body and one for $B_s \rightarrow 4$ body
 - Extra $B \rightarrow \eta' K$ component in the $B \rightarrow K \pi \pi$ model

Simultaneous fit

 Perform simultaneous fit of all four signal modes on Run 1 data

 Cross-feed yields are constrained by misID efficiencies

Simultaneous fit

Branching fraction ratios

BF ratios given by (per event) efficiency-corrected yields: $\frac{BF(hhh)}{BF(KKK)} = \frac{N^{corr}(hhh)}{N^{corr}(KKK)}$

- Background subtraction done using the sPlot technique
- $N^{\text{corr}} = \sum_{i} \frac{w_i}{\epsilon_i}$ + correction due to constrained cross-feed yields (w_i = event sWeight)
- Ratios are consistent with ratios using PDG values:
 - Statistical uncertainties considerably improved compared to PDG —
 - Results are likely to be systematically limited

	PDG ratio	Measured ratio		
$BF(\pi KK)/BF(KKK)$	0.147 ± 0.021	0.1406 ± 0.0034 (stat)		
$BF(K\pi\pi)/BF(KKK)$	1.50 ± 0.11	1.738 ± 0.013 (stat)		
$BF(\pi\pi\pi)/BF(KKK)$	0.447 ± 0.045	0.5052 ± 0.0054 (stat)		

Sources of systematics

Fit model:

- Choice of model try alternative PDFs
- Fixed parameters vary within uncertainties
- Fit bias check with toys
- Finite MC statistics
- Event selection:
 - Data/MC discrepancies
 - Veto windows
- Efficiencies:
 - Trigger, tracking corrections

Summary

- Selection strategy finalised for both runs
- Simultaneous fit to Run 1 is in good shape
 - Run 2 fit being worked on
- Preliminary results consistent with PDG
 - Potential significant improvement in precision
- Towards completion:
 - Calculate systematic uncertainties
 - Measure Run 2 ratios

Backup

Branching fraction ratios

PDG ratios

row/col	KKK	ΚπΚ	Κππ	πππ
KKK	1	6.80 <u>+</u> 0.99	0.667 <u>+</u> 0.047	2.24 ± 0.23
$K\pi K$ 0.147 \pm 0.021 1		0.098 <u>+</u> 0.015	0.329 <u>+</u> 0.055	
Κππ	1.50 <u>+</u> 0.11	10.2 <u>+</u> 1.5	1	3.36 <u>+</u> 0.36
πππ	0.447 ± 0.045	3.04 <u>+</u> 0.51	0.298 <u>+</u> 0.032	1

Measured ratios (stat uncertainties only)			LHCb	ounofficial		
row/col	KKK	ΚπΚ		Κππ		πππ
KKK	1	7.11 ± 0.17		0.5755 ± 0.0044		1.980 <u>+</u> 0.021
ΚπΚ	0.1406 <u>+</u> 0.0034	1		0.0809 ± 0.00)20	0.2783 ± 0.0071
Κππ	1.738 <u>+</u> 0.013	12.36 <u>+</u> 0.30		1		3.440 <u>+</u> 0.039
πππ	0.5052 ± 0.0054	3.594 <u>+</u>	0.092	0.2907 <u>+</u> 0.00)33	1

Simultaneous fit – log

Simultaneous fit – log

Efficiencies

Efficiencies

