Angular analysis of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Georgios Chatzikonstantinidis[‡]

‡ University of Birmingham

Joint APP and HEPP Annual Conference

Georgios Chatzikonstantinidis

Angular analysis of $\Lambda_b \to \Lambda \mu^+ \mu^-$

Introduction

- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ is a flavor changing neutral current (FCNC) decay and so very sensitive to new physics effects (NP).
- NP can alter branching fractions and angular observables.
- Aim to measure angular observables of $\Lambda_b \to \Lambda \mu^+ \mu^-$ which are sensitive to NP.

Angular distribution of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Adapted from arXiv:1802.04867v1

Angular analysis of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Differential decay rate [JHEP11(2017)138]

•Differential decay rate is written

in terms of five angles and dimuon invariant mass squared (q^2)

• J_i depend on q^2

$$\begin{split} & -\frac{1}{b_{b}} = \left(J_{1}\sin^{2}\theta_{l} + J_{2}\cos^{2}\theta_{l} + J_{3}\cos\theta_{l}\right) + \\ & \left(J_{4}\sin^{2}\theta_{l} + J_{5}\cos^{2}\theta_{l} + J_{6}\cos\theta_{l}\right)\cos\theta_{b} + \\ & \left(J_{7}\sin\theta_{l}\cos\theta_{l} + J_{8}\sin\theta_{l}\right)\sin\theta_{b}\cos(\phi_{b} + \phi_{l}) + \\ & \left(J_{9}\sin\theta_{l}\cos\theta_{l} + J_{10}\sin\theta_{l}\right)\sin\theta_{b}\sin(\phi_{b} + \phi_{l}) + \\ & 5\theta\left\{\left(J_{11}\sin^{2}\theta_{l} + J_{12}\cos^{2}\theta_{l} + J_{13}\cos\theta_{l}\right) + \\ & \left(J_{14}\sin^{2}\theta_{l} + J_{15}\cos^{2}\theta_{l} + J_{16}\cos\theta_{l}\right)\cos\theta_{b} + \\ & \left(J_{17}\sin\theta_{l}\cos\theta_{l} + J_{20}\sin\theta_{l}\right)\sin\theta_{b}\cos(\phi_{b} + \phi_{l}) + \\ & f\theta\left\{\left(J_{21}\cos\theta_{l}\sin\theta_{l} + J_{22}\sin\theta_{l}\right)\sin\phi_{l} + \\ & \left(J_{22}\cos\theta_{l}\sin\theta_{l} + J_{24}\sin\theta_{l}\right)\cos\phi_{l} + \\ & \left(J_{22}\cos\theta_{l}\sin\theta_{l} + J_{26}\sin\theta_{l}\right)\sin\phi_{l}\cos\phi_{l} + \\ & \left(J_{22}\cos\theta_{l}\sin\theta_{l} + J_{26}\sin\theta_{l}\right)\sin\phi_{l}\cos\phi_{b} + \\ & \left(J_{22}\cos^{2}\theta_{l} + J_{30}\sin^{2}\theta_{l}\right)\sin\theta_{b}\sin\phi_{b} + \\ & \left(J_{31}\cos^{2}\theta_{l} + J_{32}\sin^{2}\theta_{l}\right)\sin\theta_{b}\cos\phi_{b} + \\ & \left(J_{33}\sin^{2}\theta_{l}\right)\sin\theta_{b}\cos(2\phi_{l} + \phi_{b}) + \\ & \left(J_{34}\sin^{2}\theta_{l}\right)\sin\theta_{b}\sin(2\phi_{l} + \phi_{b})\right\} . \end{split}$$

Angular analysis of $\Lambda_b \to \Lambda \mu^+ \mu^-$

sir

Angular observables of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

- Observables J_{11} J_{34} depend on production polarisation of Λ_b .
- Define new set of observables as, $M_i = J_i/(2J_1 + J_2)$.
- In total we measure 34 angular observables (M_1 to M_{34}).
- Related to three angular asymmetries.

$$M_{i} = \frac{1}{N} \int \frac{\mathrm{d}^{6}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta\mathrm{d}\cos\theta_{I}\mathrm{d}\cos\theta_{b}\mathrm{d}\phi_{I}\mathrm{d}\phi_{b}} \times f_{i}(\cos\theta,\cos\theta_{I},\cos\theta_{b},\phi_{I},\phi_{b}) \mathrm{d}\cos\theta\mathrm{d}\cos\theta_{I}\mathrm{d}\cos\theta_{b}\mathrm{d}\phi_{I}\mathrm{d}\phi_{b} .$$

 $N = \int \frac{\mathrm{d}^6 \Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_b \mathrm{d}\phi_I \mathrm{d}\phi_b} \, \mathrm{d}\cos\theta \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_b \mathrm{d}\phi_I \mathrm{d}\phi_b \, \, .$

Forward-backward (FB) asymmetries

$$A'_{FB} = \frac{3}{2}M_3$$
 $A'_{FB} = M_4 + \frac{1}{2}M_5$ $A'_{FB} = \frac{3}{4}M_6$

Georgios Chatzikonstantinidis

Angular analysis of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Extracting the angular observables

- Angular observables are extracted using **moments analysis** (small data set size).
- Angular observables are integrated over $q^2 \in [15 20] \text{ GeV}^2/c^4$. This bin is where we have enough data to perform angular analysis.

Moments can be extracted as:

$$M_{i} = \sum_{e}^{N_{ev}} (w_{e}/\varepsilon_{e}) f_{i}(\cos\theta_{i}^{(e)}, \cos\theta_{b}^{(e)}, \phi_{i}^{(e)}, \phi_{b}^{(e)}, \cos\theta^{(e)}) / \sum_{e}^{N_{ev}} (w_{e}/\varepsilon_{e}) .$$

- f_i are the weighting functions that project out M_i.
- we are the sWeights, used for background subtraction.
- ε_e are the efficiency weights.
- Estimate errors using **Bootstrapping**.
- Moments and errors are **not** sensitive to normalisation.

Predictions

- Data points are experimental data from LHCb [JHEP06(2015)115].
- Previous LHCb measurement performed 1D Likelihood fits on the angular projections of cos θ_l and cos θ_b, using Run1 data.
- Predictions for angular observables, without binning (cyan curves) and with binning (magenta curves) [Phys. Rev. D 93, 074501].

Data analysis

Analysis is performed using data collected by LHCb detector during LHC Run1 ($3fb^{-1}$ at 7-8 TeV) and Run2 ($2fb^{-1}$ at 13 TeV).

 $\Lambda(\rightarrow p\pi^{-})$ is a long lived particle. Events considered in two track categories.

- With hits in VELO (long events LL).
- With no hits in VELO (downstream events DD).
- LL and DD events have different resolution and efficiency.

Data analysis

- Candidates chosen using loose preselection followed by MVA.
- Working point of MVA is chosen by maximising $S/\sqrt{(S+B)}$.
- Efficiency is parametrised in five angles and q², using Legendre polynomials (LP).
- The control mode used in the analysis is the $\Lambda_b \rightarrow J/\psi \Lambda$. The latter is used to understand the signal mass model of the $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ and perform validation studies related to the angular efficiency.

Georgios Chatzikonstantinidis

Angular analysis of $\Lambda_b \to \Lambda \mu^+ \mu^-$

Data analysis

• Correlations between angles and q^2 in efficiency parametrisation are properly described.

Example of 1D angular efficiency projections of $\cos \theta$ in bins of $\cos \theta_l$. Data points represent MC, blue and cyan lines represent angular efficiency with and without taking into account correlations.

Cross-check with $\Lambda_b \rightarrow J/\psi \Lambda$

Data points are the combined data for Run1 and Run2, corrected for background (sWeighted). Blue line is the total 1D angular projection, while red, green and dotted, dotted&dashed, dashed lines represent the contribution for DD, LL for 2011 + 2012, 2015 and 2016 contribution.

Georgios Chatzikonstantinidis

Angular analysis of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

March 22, 2018 11 / 14

Total Signal yield of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Total signal yield for the decay of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ is found to be 610 ± 29

March 22, 2018 12 / 14

3

< /□ > < Ξ

Angular analysis of $\Lambda_b \to \Lambda \mu^+ \mu^-$

Results

Data points are the combined data for Run1 and Run2, corrected for background (sWeighted). Blue line is the total 1D angular projection, while red, green and dotted, dotted&dashed, dashed lines represent the contribution for DD, LL for 2011 + 2012, 2015 and 2016 contribution.

Georgios Chatzikonstantinidis

Angular analysis of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

Asymmetry parameters for the combined Run1 and Run2 datasets, with blinded central values are presented, $A_{FB}^{l} = x.x \pm 0.045(stat)$, $A_{FB}^{h} = x.x \pm 0.049(stat)$, $A_{FB}^{lh} = x.x \pm 0.041(stat)$. In this analysis we measure the full set of angular observables of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ and we improve precision of angular observables extracted relative to previous LHCb measurement [JHEP06(2015)115].

Combined systematic uncertainties are expected to be on the order of 0.20% of the statistical uncertainty of the moments (M_i).

Analysis will be finished very soon.