Low Energy Single-Photon Search in MicroBooNE

Robert Murrells, University of Manchester On behalf of the MicroBooNE Collaboration

26th March 2018

MiniBooNE Low Energy Excess (LEE)

- MiniBooNE is a Cherenkov detector on the Booster Neutrino Beam-line (BNB).
- Observed an excess of electromagnetic shower events at low energy.
- MinBooNE could not discriminate between electrons and photons but its successor MicroBooNE can.
- Electron-like LEE could be evidence for sterile neutrinos.

• Photon-like LEE could be evidence for a photon background process not predicted by current neutrino generators.

NC Δ Radiative Decay

- Produces a single shower giving it the same signature as the LEE events.
- Primary goal is to test the singlephoton LEE hypothesis.
- Never measured in neutrino scattering.
- Rare in MicroBooNE, ~100 events produced per 6.6e20POT (3 years of running).
- MiniBooNE LEE rate \sim 3x the size of the predicted NC Δ radiative rate.

Event Topologies

Analysis Flow

Input: reconstructed tracks and showers (produced by The Pandora Software Development Kit for Pattern Recognition, arXiv:1506.05348).

1. Vertex Reconstruction

- Outputs reconstructed vertices with a single associated shower.

2. Pre-selection

- Apply cuts to reduce cosmic background and to constrain some variables to be in regions of interest for the signal.

3. Boosted Decision Tree (BDT)

- a. BDT for Cosmic background.
- b. BDT for BNB background.

Vertex Reconstruction

Associates reconstructed tracks and showers with each other and creates candidate vertices from these associations.

Boosted Decision Tree

- Trained BDT will place a series of 1-d cuts on these variables to produce a response variable which quantifies how signal or background-like a vertex is.
- Two pronged approach to Background Rejection:
 - BDT trained for cosmic backgrounds
 - BDT trained for BNB backgrounds

MANCHESTER

Selection (Work in Progress)

NC Δ radiative signal has been scaled up by a factor ~3 to match the LEE in MiniBooNE.

Background (Work in Progress)

Verticies Verticie NC Δ Radiative Largest background • NC Δ Radiative γ 50 contribution post-BNB NC π⁰ γ **BNB** WORK IN selection is from π^0 40 BNB CC π⁰ γ PROGRESS Cosmic BNB breakdown -> 2y decay BNB Other y 30 accounting for ~76 BNB electron 20 WORK IN % of all BNB other PROGRESS 10 background. Cosmic 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 õ Reconstructed Shower Energy [GeV] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 45

BNB BDT

 π^0 decay is almost indistinguishable from signal if one of the two photons is not observed.

Reco Shower Energy [GeV]

$NC \Delta Radiative Signal$

π^{0} ->2 γ Background

Summary

- This is the first attempt at measuring low energy NC Δ radiative events from neutrino scattering.
- Challenging analysis due to low signal event rate and high background rate.
- Significant cosmogenic background rejection has been achieved, while maintaining good signal efficiency.
- Future work:
 - Optimization of all stages of analysis.
 - Further background mitigation strategies for dominant π^0 background.

Backup

Pre-selection

Implemented for two main purposes:

- To reduce cosmic vertices to a sufficient level such that what remains can be used to train the cosmic rejection BDT efficiently.
- To constrain some variables to be in regions of interest for the signal.

Cut values:

- 1. Reconstructed Neutrino Vertex < 10cm from closest TPC wall
- 2. Total photo-electrons inside the beam gate > 50
- 3. Reconstructed Shower Energy > 50 MeV
- 4. Length of longest associated track < 150cm
- 5. Distance between shower start and reconstructed vertex > 2cm

Cosmic and BNB BDT Variables

All vertices:

- Shower Reconstructed energy
- Shower Theta
- Shower Phi
- Shower dE/dx
- Vertex position
- Vertex distance to closest TPC boundary
- Total PE sum of in time flashes
- Distance between shower and closest in-time flash.

Additional variables for vertices with > 0 tracks:

- Shower start vertex distance
- Number of tracks
- Longest track length
- Longest track Theta
- Longest track Phi
- Longest track dE/dx proton PID
- Angle between track and shower

