

universite

RIS-SACLA

Recent Developments in the Spherical Proportional Counter for NEWS-G

Patrick Knights

University of Birmingham & IRFU CEA Saclay

Spherical Proportional Counter

- Spherical Proportional Counter proposed by I.
 Giomataris
- Sphere filled with desired gas mixture and pressure
- Electrons from ionisation in the gas drift to the anode where they are amplified

$$E_r = V_0 \cdot \frac{r_a r_b}{(1 - 1)^{1/2}}$$
 $V_0 = \text{ anode voltage}$
 $r_a = radius of anode$

I.Giomataris et al ,JINST,2008, P09007

 $(r_b - r_a)r^2$ r_b = radius of sphere

P Knights, IOP HEPP & APP

G. Charpak and I. Giomataris

Fiducialisation and Background Rejection

A Realistic Geometry

In reality the anode is attached to a wire to supply the high voltage and this wire is surrounded by a grounded rod

Anode, wire and grounded rod

Sensor Development

- Necessary to maximise the usable volume in the detector
- □ Idea: Add a field corrector to rod (umbrella)
- □ Using insulator
 - Charging up and unstable operation
- Using biased conductor
 - Sparks from the anode
- Using resistive materials
 - Resistivities $10^9 10^{12} \Omega \cdot cm$
 - Allow application of a voltage
 - Reduced risk of discharge
 - Tried different geometries

New Sensor Design

- □ Simple design
 - Few Components
 - Simple geometry
 - Can easily vary parameters to optimise electric field configuration
- Studied using ANSYS FEM Software
 - V₀ (Anode voltage)
 - V₁ (Umbrella voltage)
 - Separation Umbrella and Anode
 - Anode radius

Anode, wire and grounded rod

Bakelite Structure

28/03/2018

Sensor Design: Anode-Umbrella Separation

Sensor Design: Umbrella Voltage

□ Gain reduced by presence of positive voltage on umbrella - electric field near anode reduced

Voltage Degrader

□ Optimal design: voltage degrader chain

- Many small pieces to make up the rod
- Pieces set to gradually decreasing voltages umbrella to outer sphere
- Segmenting rod can make a three part degrader
 - Substantial improvement to the outer electric field
 - However, practically challenging

Cylindrical Umbrella

- Longer cylindrical field corrector structures at appropriate voltage may behave like a one-segment degrader
- □ Potentially further space for optimisation
 - Extra parameter: length of umbrella

A Multi-ball Anode Structure - ACHINOS

70

For larger SPCs and higher pressure operation, for instance NEWS-G SNOLAB, single anode ball may not be enough

- Avalanche gain and primary electron drift time are linked
- Solution -> "ACHINOS" Multi-ball Structure
 - Gain of a ~mm anode ball
 - Electric field at large radii of an ~10 mm anode

A. Giganon et al 2017 JINST 12 P12031

400

350

300

250

200

150

100

Summary and Next Steps

- Quality of electric field crucial for detector operation
- Simulation and measurements performed for various field corrector designs
- Now moving towards implementation for experiment
 - Anode soldering
 - Material for field corrector
 - Electrical contact with field corrector
 - Precision production of sensor components:
 3D Printing
- □ Preparing for next physics run

