Sensitivity Studies and Development of the Gas Supply System for the SuperNEMO Experiment

Lauren Dawson

supernemo

collaboration

Gas System

-95% Helium, 4% Ethanol, 1% Argon

- Aim: control/monitor pressure, temperature, flow rates

- Mass flow controller
- Variable area flow meter
- Backpressure regulator

Helium - Minimises multiple scattering, reduces energy loss.

Ethanol - Quencher, prevent re-firing.

Temperature change of ~2°C, ~0.5% change in ethanol fraction. Affects hit efficiencies.

Gas System Electronics Crate

Further work on Gas System hardware

- Display installed for local monitoring

From Gas System to Backgrounds

- Reduce radon deposition in the tracker by flowing gas through the detector.
- ²²²Rn eventually decays to ²¹⁴Bi which forms one of the key backgrounds to $0\nu\beta\beta$.
- Further details of radon reduction strategies in Fang Xie's talk "Radon Background Mitigation Strategy for the SuperNEMO Experiment".

What are our key backgrounds?

- ²¹⁴Bi, ²⁰⁸Tl are both β decaying isotopes
- Bi 3.27 MeV, TI 4.99 MeV
- Mimic 0vββ signal Q 2.998 MeV -

²¹⁴Bi, ²⁰⁸TI in naturally occurring ²³⁸U and ²³²Th decay chains

Target activities

- How much contamination from these backgrounds?
- Target activities in the foils: Bi < 10 μ Bq/kg, Tl < 2 μ Bq/kg
- Radon < 0.15 mBq/m³, 2mBq for demonstrator volume

Detector Property	NEMO-3	SuperNEMO
Isotope	¹⁰⁰ Mo	82 Se
Source Mass	$7 \mathrm{kg}$	100 kg
$0\nu\beta\beta$ Efficiency	18%	30%
Energy Resolution	8% @ 3 MeV	4% @ 3 MeV
214 Bi in foils	$300 \ \mu Bq/kg$	10 µBq/kg
²⁰⁸ Tl in foils	$100 \ \mu Bq/kg$	$2 \ \mu Bq/kg$
222 Rn in tracker	$5 \mathrm{mBq/m^3}$	$0.15 \mathrm{~mBq/m}^3$
$T_{1/2}^{0\nu}$ Sensitivity	10^{24} yr	$10^{26} { m yr}$
$\langle m_{\beta\beta} \rangle$ Sensitivity	0.3 - 0.7 eV	40 - 100 meV

Measure ²¹⁴Bi activity

- Identify a topology that gives a clean 214 Bi sample - 1e1a topology

â ((

Measure ²¹⁴Bi activity

- Identify a topology that gives a clean ²¹⁴Bi sample 1e1α topology Identify detector regions that contribute to reconstructed sample _

Assuming 7 kg isotope - Demonstrator

Source foil bulk: estimated 15.4 mBq from BiPo 'upper limit' (target 70 μ Bq). ²¹⁴Bi contamination of foils from natural ²³⁸U decay chain

Source foil surface: estimated 0.18 mBq ²¹⁴Bi contamination of mylar wrapper from natural ²³⁸U and ²³²Th decay chains

Bi deposited from Rn in tracker

Radon in tracker: estimated 45.5 mBq (before flow rate suppression, expected to meet target - 2.4 mBq for demonstrator.)

- Positive ²¹⁴Bi ions from Rn decay are deposited on field shaping wires
- Impossible to distinguish activity in first tracker layer from activity in foil

Measure ²¹⁴Bi activity

- Identify a topology that gives a clean ²¹⁴Bi sample 1e1α topology
- Identify detector regions that contribute to reconstructed sample
- Find a variable in which each sample has a distinctive shape

alpha particle track lengths for foil bulk, surface, and tracker wires

Measure ²¹⁴Bi activity

- Identify a topology that gives a clean ^{214}Bi sample 1e1a topology
- Identify detector regions that contribute to reconstructed sample
- Find a variable in which each sample has a distinctive shape
- Generate pseudo data from a combination of each sample, fit for the fractional contributions of each, and check we can reproduce the activities
- How long must we run to achieve acceptable precision on our measured activity?

²¹⁴Bi sample - 1e1a topology te to reconstructed sample has a distinctive shape

Measure ²¹⁴Bi activity

- Identify a topology that gives a clean ²¹⁴Bi sample
- Identify detector regions that contribute to reconstructed sample
- Find a variable in which each sample has a distinctive shape
- Generate pseudo data from a combination of each sample, fit for the fractional contributions of each, and check we can reproduce the activities
- How long must we run to achieve acceptable precision on our measured activity?
- Once we have a reliable ²¹⁴Bi activity measurement, we can use that to constrain the ²⁰⁸Tl activity from a distribution where both contribute.

Alpha Finder

Alphas: short, straight, delayed tracks, not reaching the calorimeter wall.

'Long' alphas (>2 hits) are clustered and fitted by a standard module in the pipeline. Track fitted from the centre of the furthest delayed cell back to the foil (if there is a hit in the first layer).

Short alphas (1-2 hits) cannot be fitted so are dealt with by a custom module 'Alpha Finder'.

Alpha Finder

1 delayed hit: Track is fitted from centre of delayed cell to the vertex extrapolation of the prompt track

2 delayed hits: Track is fitted from centre of the furthest delayed cell to the vertex extrapolation of the prompt track

In both cases a prompt track is required.

â (

Individual contributions normalised by activity

 $A_{bulk} = 15.4 \text{ mBq}, A_{surf} = 0.18 \text{ mBq}, A_{track} = 45.5 \text{ mBq}$ Showing individual contributions from bulk, surface and wires

Pseudo Experiment

Pseudo-experiment with three contributions after 60 days exposure

 $A_{bulk} = 15.4 \text{ mBq}, A_{surf} = 0.18 \text{ mBq}, A_{track} = 45.5 \text{ mBq}$

UC

Input vs output activity

Input activity vs fitted activity for 214 Bi Bulk of source foil, varying input by $\pm 20\%$

Fitted Activity [Bq]

- Varied input activities by $\pm 20\%$, check quality of fit. - Exposure 180 days.

Input activity vs fitted activity for 214 Bi Surface of source foil, varying input by $\pm 20\%$

Relative errors σ/μ

 σ/μ from the distribution of the outputted activities.

²⁰⁸TI Channel

1eNγ topology - event has gammas (N>0)

$1eN\gamma$ topology - event has 1 electron, no alphas and N

Gamma Identification

Isolated calorimeter hits

Hits chained if it is possible for a gamma to traverse this distance in the times found

²⁰⁸TI Electron Energy

Energy of electron, ²⁰⁸TI bulk and ²¹⁴Bi all areas, 1E6

²⁰⁸TI Total Gamma Energy

Number of events /0.055 MeV, area normalised to

Total gamma energy, ²⁰⁸TI bulk and ²¹⁴Bi from all areas, 1E6

²⁰⁸TI - Pseudo experiment

Pseudo-experiment with two contributions after 60 days exposure

²⁰⁸TI - Relative Errors

- Apply TFractionFitter
- Plot ²⁰⁸Tl fitted activities and find the relative errors

Relative errors for varying exposure, ²⁰⁸TI and ²¹⁴Bi

208**T** 10% : 40 days 5% : 180 days

Â

214Bi 1.5%: 3 days

Summary

- Gas System integrated with SuperNEMO slow control & monitoring, and ready for running.
- Initial estimates calculated for how long it will take to measure the significant backgrounds to the $0\nu\beta\beta$ process.

Ê

Thank you!

Back ups

19.7 min ²¹⁴Bi 2447 keV 2.8% 5.5% 2204 4.3% 2118 2.5% 2017 8.3% 1847 18%1764 ${\rm E}_e^{\rm max} \sim 1.5~{\rm MeV}$ 1730 18% 3.3% 1543 7.6% 1378 1120 keV 1238 1408 1509 934 768 1.0% 609 5.9% 2.5% 609 keV 4.9% 15.0%. 3.2% 1764 keV 1378 1730 2204 2447 1847 164µs 18% ²¹⁴₈₄Po 46% 15.8%2.1% 5.0% 1.5% 3.4% 2.9% $\mathsf{Q}_\beta\,=\,3.27\,\,\mathsf{MeV}$

Fitted Activities - 60 days

- Repeated mock data generation and fitting 10⁵ times. - Calculated new fitted activities, plotted and fitted gaussian:

Alpha lengths for different areas of the demonstrator

1E6 events generated in source foil bulk, on the surface of the foil, and on the tracker field wires.

Alpha track lengths Bi214, 1E6 1e1a bulk of source foil,10 µs, xy 40 cm

Alpha track lengths Bi214, 1E6 1e1a field wires, 10 μ s, xy 40 cm

Reconstruction efficiencies for different topologies

