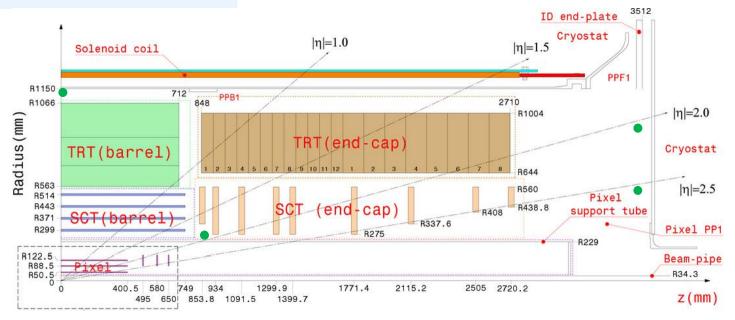
Measurement of radiation field in the ATLAS Inner Detector with Online Radiation Dose Measurement System

I. Mandić^a, representing ATLAS ID Rad. Mon. group

^aJožef Stefan Institute, Ljubljana, Slovenia

Introduction

- online Radiation dose monitoring measures accumulated ionizing dose (TID) in SiO₂ and displacement damage in silicon
- doses are monitored at 14 locations in the Inner Detector, sensors read out every 60 minutes
- purpose: monitoring of radiation damage in detectors and electronics


More information about the monitoring system in:

- I. Mandić et al., "Online integrating radiation monitoring system for the ATLAS detector at the large hadron collider," *IEEE Trans. Nucl. Sci.*, vol. 54, no. 4, pp. 1143–1150, Aug. 2007.
- I. Mandić et al., "First Results from the Online Radiation Dose Monitoring System in ATLAS experiment" 2011 IEEE Nuclear Science Symposium Conference Record, NP3.M-40

<u>https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasInDetRadMon</u>

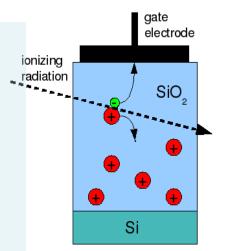
Monitoring Locations

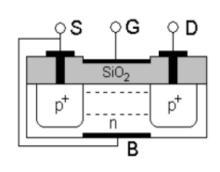
• 14 monitors in the Inner Detector

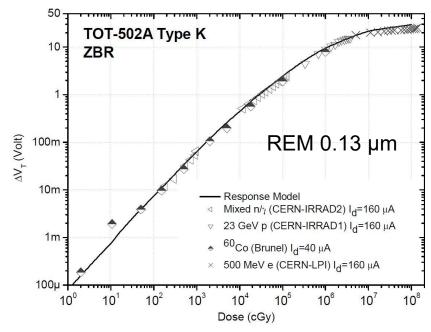
Location	<i>r</i> (cm)	<i>z</i> (cm)			Side C		•	Side A	
Pixel Support Tube (PST)	23	90	end plate	cryost	SCT	Pixel	y O	TRT	+z
ID end plate small r	54	345	9)		· · · · · · · · · · · · · · · · · · ·	Picel	SCT	1
ID end plate large r	80	345		/	TRT		• <u>*</u>	cryostat w	a
Cryostat Wall	110	90							

TID measured with RadFETs

RadFETs: p-MOS transistor

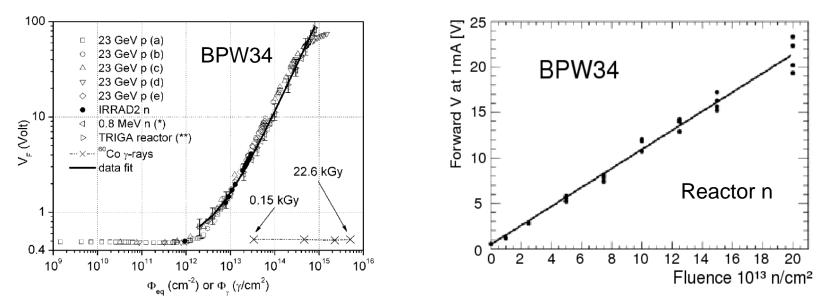

3 RadFETs at each


LAAS 1.6 µm;


REM 0.25 µm; REM 0.13 µm

monitoring location:

- radiation induced holes trapped in the gate oxide:
 - → increase of threshold voltage with dose: $\Delta V = a \times (TID)^{b}$
- sensitivity and dynamic range depend on oxide thickness


A.H. Siedle, F. Ravotti, M. Glaser, *The Dosimetric Performance of RADFETs in Radiation Test Beams* 2007 IEEE Radiation Effects Data Workshop, https://doi.org/10.1109/REDW.2007.4342539

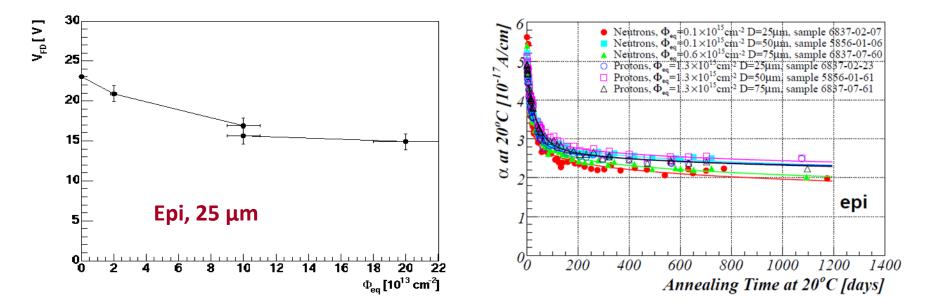
1 MeV n eq. fluence measurements with diodes

- displacement damage in silicon: increased resistance, reduction of carrier lifetime, increase of reverse current
 - → forward bias: voltage at given forward current increases
 - ➔ reverse bias: reverse current increases

Forward bias

- linear response $\Delta V = k \cdot \Phi_{eq}$
- high sensitivity diode (CMRP, University of Wollongong, AU) 10⁹ to ~10¹² n/cm²,
- commercial (Osram) silicon PIN photodiode BPW34F 10¹² to ~10¹⁵ n/cm²

F. Ravotti et al., *BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring,* IEEE TNS, VOL. 55, (2008), p 2133 I. Mandić, Radiation effects at the LHC workshop, CERN, April 24, 2018

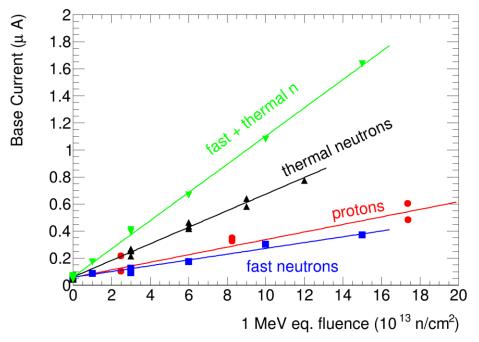

1 MeV n eq. fluence measurements with diodes

Reverse bias

Reverse current proportional to fluence $\Delta I = \Phi_{eq} \alpha V$

- 25 µm x 0.5 cm x 0.5 cm pad diode with guard ring structure processed on epitaxial silicon
 - → thin epitaxial diode can be depleted with V_{bias} < 30 V also after irradiation with 10¹⁵ n/cm²
 - \rightarrow in this fluence and time range V_{bias} does not increase with annealing
- sensitive from 10¹¹ n/cm² to 10¹⁵ n/cm²

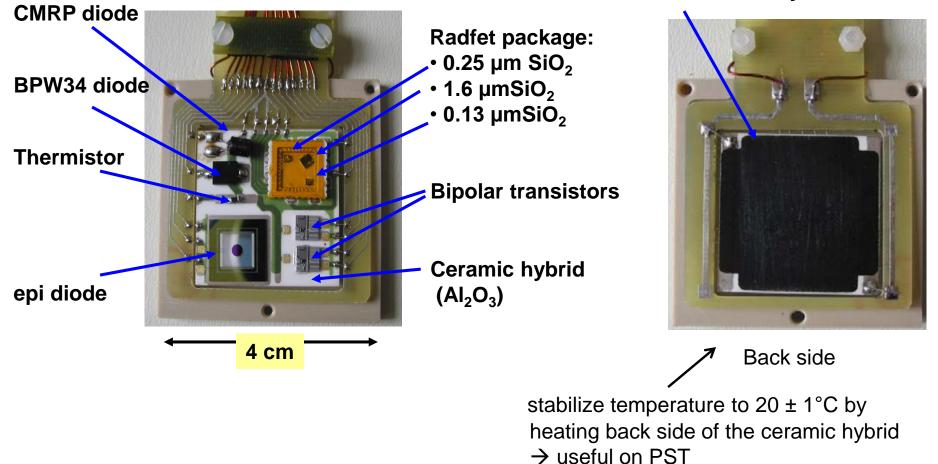
relatively large annealing corrections needed


I. Mandić, Radiation effects at the LHC workshop, CERN, April 24, 2018

Thermal neutrons

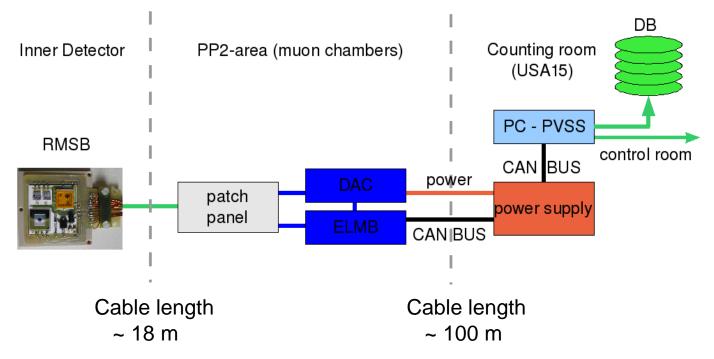
- DMILL bipolar transistors produced by ATMEL
- measure base current at 10 uA collector current in common emitter configuration
 - → sensitive to fast and thermal neutrons
 - → same type of transistors as input transistor in ABCD3TA chip → info about chip performance

$$\Delta I_b = k_{eq} \cdot \boldsymbol{\Phi}_{eq} + k_{th} \cdot \boldsymbol{\Phi}_{th}$$


 k_{eq} , k_{th} from calibration, Φ_{eq} measured with diodes $\rightarrow \Phi_{th}$ can be determined

For more info see:

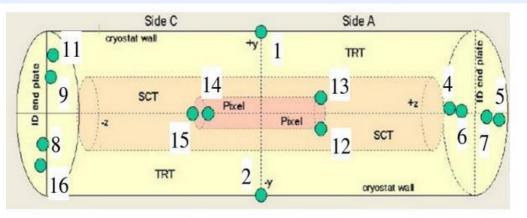
I. Mandić et al., "Bulk Damage in DMILL npn Bipolar Transistors Caused by Thermal Neutrons Versus Protons and Fast Neutrons", IEEE TNS, VOL. 51, (2004) p. 1752


Radiation Monitor Sensor Board (RMSB)

Thick film resistive layer R = 320 Ω

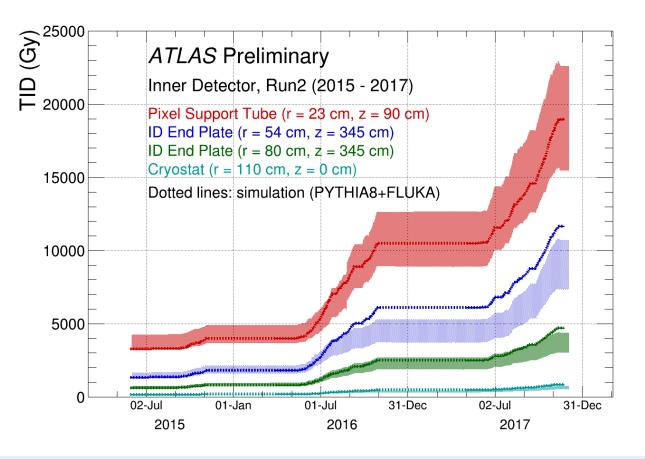
Readout

- use standard ATLAS Detector Control System components
 - ELMB:
 - 64 ADC channels
 - CAN bus communication
 - ELMB-DAC:
 - current source, 16 channels ($I_{max} = 20 \text{ mA}, U_{max} = 30 \text{ V}$)
- sensors are biased only during readout (~ few minutes every hour)
- software written in PVSS
- sensors read out once per hour, data stored in DCS database
- integrated in the ATLAS DCS



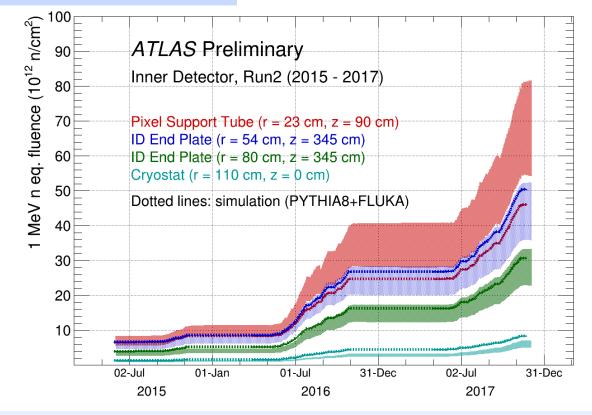
Simulation

fluence and dose predictions at radmon locations based on Pythia8 + FLUKA simulation:


https://twiki.cern.ch/twiki/bin/view/Atlas/RadiationBackgroundSimulationsRun2#Fluen ce_and_dose_values_at_RadMo

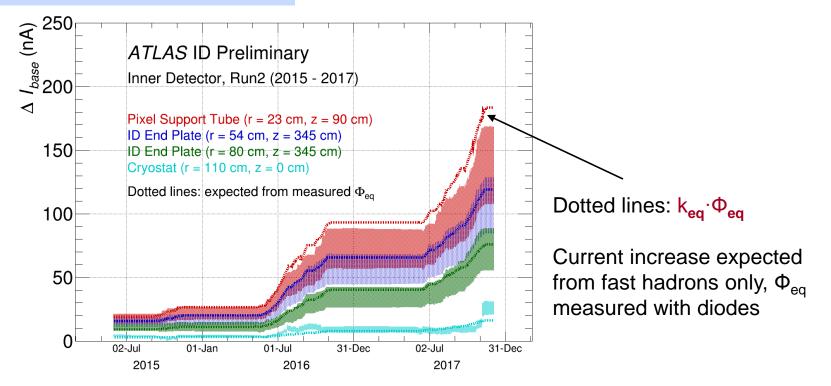
- Dose and fluence factors per 1 fb⁻¹ integrated luminosity
- the upper energy limit for scoring of thermal neutrons is 1 eV.
- the fluence and dose values are based on 49900 events for 13 TeV.

RadMon number	Z (cm)	R (cm)	1 MeV neq (x 10 ¹¹ cm ⁻²)	total ionising dose (Gy)	thermal neutrons (x 10 ¹¹ cm ⁻²)
1, 2	1	110	0.75	7.51	0.67
12, 13, 14, 15	90	23	4.21	167.4	1.14
6, 7, 8, 9	344	54	4.67	110.2	1.69
4, 5, 11, 16	344	80	2.85	43.6	1.48


TID

- REM 0.13 µm RadFETs
- bands show measured values, width $w = \sqrt{(\sigma^2 + (\sigma_{cal})^2)}$ where: σ is the standard deviation and $\sigma_{cal} = 20\%$ is the accuracy of calibration and corrections
- simulated curves: TID = integrated_luminosity · dose_factor
 → Dose factors (Gy/pb⁻¹) from:

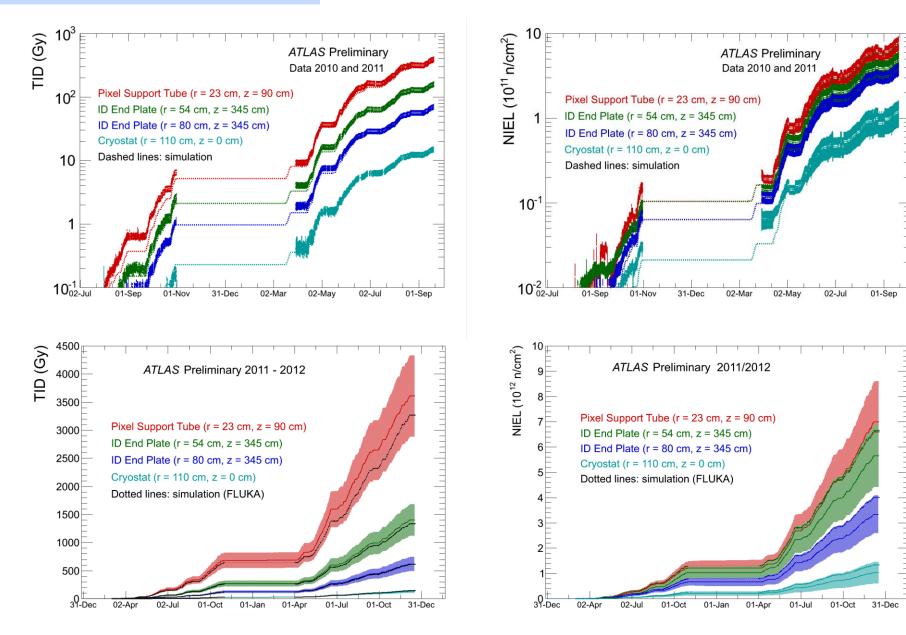
https://twiki.cern.ch/twiki/bin/view/Atlas/RadiationBackgroundSimulationsRun2#Fluence_and_dose_values_at_RadMo


1 MeV n eq. fluence

- BPW34 diodes, forward bias at 1 mA forward current
- bands show measured values, width $w = \sqrt{(\sigma^2 + (\sigma_{cal})^2)}$ where: σ is the standard deviation and $\sigma_{cal} = 20\%$ is the accuracy of calibration and corrections
- simulated curves: Φ_{eq} = integrated_luminosity · fluence_factor
 → Dose factors (Φ_{eq}/pb⁻¹) from:

https://twiki.cern.ch/twiki/bin/view/Atlas/RadiationBackgroundSimulationsRun2#Fluence_and_dose_values_at_RadMo

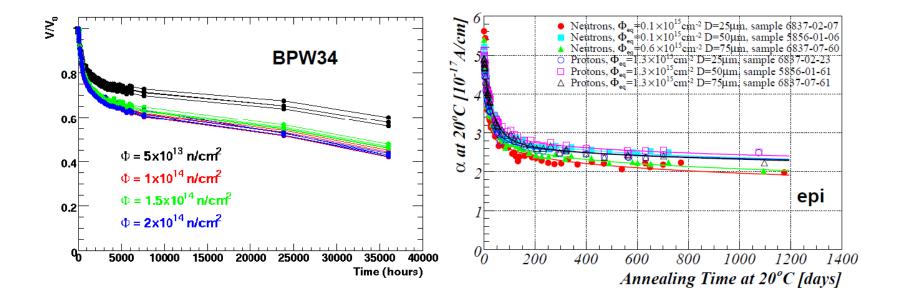
Current increase in transistors



• increase of base current $\Delta I_b = k_{eq} \cdot \Phi_{eq} + k_{th} \cdot \Phi_{th}$

- Φ_{eq} measured with diodes, k_{eq} and k_{th} calibration constants measured in reactor and PS
 - → expect to see the effect of Φ_{th} if $\Phi_{th} > ~ 0.2 \cdot \Phi_{eq}$ (expected at all monitoring locations)
- measured current increase consistent with fast hadrons only

→ not understood: response different than in calibration and/or Φ_{th} much smaller than expected


Results Run 1

Summary

- measurements of TID and 1 MeV n eq. fluences with online integrated dose monitoring system in the ATLAS ID
 - ➔ good agreement with doses and fluences expected from Pythia8 and FLUKA simulation
- increase of base current in bipolar transistors consistent with damage from fast hadrons alone
 - \rightarrow response of sensors different than in calibration or thermal neutron fluences small

Annealing

