SEU in ATLAS FE-I4 electronics

Pierfrancesco Butti

on behalf of ATLAS Pixel team
April 23, 2018

Introduction

- During 2016/2017 data taking campaign LHC delivered in total $87 \mathrm{fb}^{-1}$ of integrated luminosity, reaching $2.09 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ of peak stable luminosity
- The ATLAS Pixel detector operated in an unprecedented high-radiation environment, and in particular the Insertable B-Layer (IBL) being the closest layer to the interaction point
- The FE-I4 has specialised electronic circuits designed to be very SEU-hard, which stores both global and pixel configuration in Dual Interlocked CElls (DICE) latches, arranged in a special layout
- We present a series of observations and measurements of the effects of both the global and pixel registers corruption due to SEU using 2016 and 2017 data delivered by LHC

FEI4 - DICE Latches and global configuration

- FE configuration memory is stored in Dual Interlocked CElls (DICE)
- SEU tolerant memory
- X1-X4 store data as 2 pairs of complementary values
- If, for example, X1 $0 \rightarrow 1$, MP2 (MN3) is blocked avoiding perturbation to X2 (X3)
- If X1 and X3 are upset, then memory is corrupted

Global Configuration

- 32 16-bit words (512 bits total)
- Control general operation of the chip
- Triple DICE latches redundancy
- SEU-hardness measured in CERN-2008-008, JINST 8 C02026, FE-I4B Manual.

Global Registers SEU effects

- Global Registers corruption has large impact on the correct module operation
- The Low Voltage (LV) current consumption and the Hits per Event per Pixel per Front-End show both a drop is often observed when a front end global configuration gets corrupted
- The LV measurement has only 4 FEs granularity
- Corrective actions (re-send of global configuration) taken at the event counter reset signal (ECR) restores the proper function of the module

FEI4 Pixel Configuration

Pixel Configuration

- 13 bits per pixel
- output enable, TDAC (5-bits) analog threshold, FDAC (4-bits) for feedback current

PxStrobes	Latch controlled in the pixel
$[0]$	Output enable. Must be set to 1 to see hits through the normal readout path.
$[1: 5]$	TDAC value [1]=MSB
$[6]$	Large injection capacitor. Must be 1 to inject charge through this capacitor.
$[7]$	Small injection capacitor. Must be 1 to inject charge through this capacitor. In parallel with large capacitor.
$[8]$	Imon and Hitbus out. Must be 1 to monitor leakage current or 0 to include pixel in hit bus.
$[9: 12]$	FDAC value [12]=MSB

- Output enable mostly stores 1 s
- TDAC is centered around 15
- FDAC is centered around 7
- Charge injection capacitor selection and hit-bus are at 1
- SEUs during data taking corrupt pixel configurations leading to:
- Quiet pixels
- Noisy pixels
- General detuning

Quiet Pixels observation 2016/2017

		3D					C SIDE				Planars							
${ }_{\text {FEF-14 Chip }}$	cos.				cr.1					ca	$\mathrm{C}_{2} \mathrm{Ca}$		${ }_{32}{ }^{2}$	csal		c2.		1.2 C

- Study of the fraction of pixels that get quiet during a data-taking in 3D modules
- In 2016 (2017) the average occupancy in the most forward 3D module in the C-Side is measured to be about 46 (47) in a pre-defined integrated luminosity range
- Only single pixels clusters in z-direction are taken and edge pixels are removed
- The average occupancy has been shown to be flat with respect to the pixel location on the sensor
- The probability that a normal pixel never fires in that period is 1.1×10^{-20} $\left(3.9 \times 10^{-21}\right)$ for 2016 (2017)
- A pixel is considered quiet if it never fired during that time

Quiet Pixels observation

- The fraction of quiet pixels increases linearly with luminosity
- Similar slopes across the various modules
- Initial point corresponds to the initial disabled pixels in the module.
- 2016: One module got disabled \rightarrow quiet fraction to 1
- 2017: Single modules auto-reconfiguration actions are active and show reduction quiet pixels \rightarrow confirmation that is configuration corruption effect

Noisy Pixels observation

- Study of the fraction of pixels that get noisy in data-taking in 3Ds modules
- A noisy pixel is defined as a pixel that fires more than 300 times in a pre-defined integrated luminosity range
- A regular pixel has a probability to be noisy of $2.3 \times 10^{-136}\left(5.4 \times 10^{-134}\right)$ in 2016 (2017), under the previous definition
- An increase of the noisy pixels is observed in all the modules
- Reconfiguration actions restore the fraction of noisy pixels \rightarrow confirmation that is configuration corruption effect
- Convolution of flips of various latches can cause a pixel to become noisy

Integrated Luminosity $\left[\mathrm{pb}^{-1}\right]$

Broken Clusters

- Quiet pixels will lead to long clusters getting split by the clustering algorithm \rightarrow
- broken clusters \rightarrow two clusters with 1 -pixel gap along z-direction and $\Delta_{\text {Row }}<3$
- With $\Delta_{\text {Row }}$ the center-to-center cluster distance in $r-\phi$
- Flat combinatory background, number of broken clusters from $\Delta_{\text {Row }}$ fit.
- Linear increase with integrated luminosity, starting point depends on the number of disabled/dead pixels

Output enable bit flip

- The output enable bit flip with integrated luminosity, which corresponds to a $0 \rightarrow 1$ transition was checked disabling all pixels of some 3D modules at the beginning of a LHC fill
- The number of pixels that fire at the passage of a charged particle indicate a SEU-induced flip of hit-enable DICE latch
- The neighbouring sensor is used to find a period of time such that the probability of non-illuminating a SEU-enabled pixel is $<10^{-6}$
- Fraction of enabled pixels increases with integrated luminosty

Readback of the latches

- The FE-I4 provides the functionality to read back the content of the DICE latches
- The readback is done by copying the latches content in the Shift Register (SR) for each Double Column and transmitting it back to the RODs
- Such procedure allows for checking the content of each of the 13 latches/pixel independently
- Direct comparison with the configuration saved in the database
- Read-back cannot be performed while a FE receives trigger signals
- Only 2 read backs for planars at the beginning and end of the run, where no radiation is present
- Intermediate point using 3D

Read-back possible mistakes

- Bit-flips on Rx lines probability: $<10^{-7}$ (10 multiple read-backs). Checked both in test-area and in without beam
- Bit-flips on the SR in beam presence probability: $<2 \times 10^{7}$ (5 multiple-read backs)

Expected behaviour of the latches content

- The amount of upsets as function of integrated luminosity is given by

$$
\begin{gather*}
N_{1}(\mathscr{L})=N_{1}(0) \mathrm{e}^{-\gamma \mathscr{L}}+\frac{\sigma_{0}}{\gamma} N_{p i x}\left[1-\mathrm{e}^{-\gamma \mathscr{L}}\right] \tag{1}\\
N_{0}=N_{p i x}-N_{1} \tag{2}
\end{gather*}
$$

- with $\gamma=\sigma_{0}+\sigma_{1}, \sigma_{i}$ is the probability of bit-flip from state $i, N_{p i x}$ total number of pixels in a Front End (=26880) and \mathscr{L} is the integrated luminosity
- Considering only the evolution of the pixels in a definite state transitions it simplifies to

$$
\begin{equation*}
N_{0}(\mathscr{L})=N_{0}(0) \mathrm{e}^{-\sigma_{0} \mathscr{L}} \quad N_{1}(\mathscr{L})=N_{1}(0) \mathrm{e}^{-\sigma_{1} \mathscr{L}} \tag{3}
\end{equation*}
$$

- Measurements of noisy and quiet pixels indicate that $\sigma_{i} \mathscr{L} \ll 1$, hence linear approx holds:

$$
\begin{equation*}
\sigma_{i}=\frac{N_{i}(0)-N_{i}(\mathscr{L})}{N_{i}(0)} \quad \text { with } i=0,1 \tag{4}
\end{equation*}
$$

Readback of the pixel registers - output enable

- Read back results of the output enable latch
- The evolution depends on both $0 \rightarrow 1$ and $1 \rightarrow 0$ transitions, according to (1)
- Initially most of the pixels are enabled $N_{1}(0) \approx N_{p i x}$
- Two readbacks for planars: before start of the collisions and after beam dump
- Intermediate point from 3D modules readback

- Amount of output enable bit-flips compatible with amount of pixels getting disabled considering:
- Module by module dependence
- Quiet pixels can be due to TDAC bit-flips too

Readback of the pixel registers - TDAC and FDAC MSB

- Read back results of the most significant bits of TDAC and FDAC
- The evolution depends on both $0 \rightarrow 1$ and $1 \rightarrow 0$ transitions, according to (1), but also on the number of initial number of 0 s (1s) actually present in the latches
- Two readbacks for planars: before start of the collisions and after beam dump
- Intermediate point from 3D modules readback
- The increase of the number of 1 s stored in the latches is compatible with the observations of noisy pixels:
- Noisy pixels are due to lowered pixel thresholds
- The higher the TDAC, the lower the threshold
- Highly noisy pixels are the result of the flip of the MSB of the TDAC

FEl4 Registers - Decoupled readback

- Read back of the time-evolution of pixels in an initial definite state, which follows (3) and, in linear approx, (4)
- Two read-back before beam presence and after beam dump for planars and intermediate point for 3Ds
- Observed $\sigma_{0}>\sigma_{1}$, compatible with increase of noisy pixels, while with output enable flips within module by module fluctuations

FEl4 Registers - transitions cross sections

Measurement of the SEU transition cross-section for the various FE investigated Only reported for the latches most important for DAQ operations
The output enable σ_{0} has not been calculated as not enough $0 s$ are stored in this latch for an accurate computation
The $0 \rightarrow 1$ transition appears to be larger with respect to the $1 \rightarrow 0$ transition for all the front-ends investigated.
No considerable latch-by-latch dependence is observed on these latches

Conclusions

- During 2016 and 2017 LHC operated at very high luminosity where it is possible to study various radiation damage effects on the Pixel detector
- The study presented here shows the rate and effects of SEUs on global and pixel registers configurations for FE-I4
- Global configuration corruption leads to loss of occupancy and drops in the Low Voltage of the modules
- Pixel configuration corruption leads to noisy and quiet pixels that increase, in percentage, during data taking
- The global configuration is re-send to the modules every 5 s during data taking. A similar mechanism of dynamic re-configuration of pixel registers is currently under development and will be used during 2018 data taking campaign

BACKUP

FE-14 global configuration

- Global configuration is composed by 32 words of 16 bits - 512 bits
- Triple redundancy of the SEU-hard DICE latches
- Single DICE latch bit flips are signalled by error counter
- Measurement of the SEUs achieved by test beam with normally incident 24 GeV GeV protons
- Cross section: $2 \times 10^{-16} \mathrm{~cm}^{2}$.
- Refs: CERN-2008-008, JINST 8 C02026, FE-I4B Manual

Latches evolution

- The number of $0 \mathrm{~s}\left(N_{0}\right)$ and $1 \mathrm{~s}\left(N_{1}\right)$ after a time T is given by:

$$
\left\{\begin{array}{l}
N_{0}(T)=N_{0}(0)+N_{1 \rightarrow 0}(T)-N_{0 \rightarrow 1}(T) \\
N_{1}(T)=N_{1}(0)-N_{1 \rightarrow 0}(T)+N_{0 \rightarrow 1}(T) \\
N_{0}(T)+N_{1}(T)=N_{0}(0)+N_{1}(0)=N_{\text {pix }}
\end{array}\right.
$$

where $N_{i \rightarrow j}(t)$ is the number of pixels that transitioned from the bit value i to the bit value j and $N_{\text {pix }}=26880$.

- The amount of $i \rightarrow j$ transitions per time unit is given by:

$$
d N_{1 \rightarrow 0}(t)=\alpha_{1}(t) N_{1}(t) d t, \quad d N_{0 \rightarrow 1}=\alpha_{0}(t) N_{0}(t) d t
$$

where $\alpha_{1}(t)$ and $\alpha_{0}(t)$ are the probability that the SEU happens and can be written as

$$
\alpha_{k}(t)=\sigma_{k} L(t) \quad k=0,1
$$

with $L(t)$ being the instantaneous luminosity.

Latches Evolution

- We obtain:

$$
\left\{\begin{array}{l}
\dot{N}_{0}(t)=\sigma_{1} L(t) N_{1}(t)-\sigma_{0} L(t) N_{0}(t) \\
\dot{N}_{1}(t)=\sigma_{0} L(t) N_{0}(t)-\sigma_{1} L(t) N_{1}(t)
\end{array}\right.
$$

- Using $N_{0}+N_{1}=N_{\text {pix }}$ we have :

$$
\dot{N}_{1}=\left[\sigma_{0} N_{p i x}-\left(\sigma_{0}+\sigma_{1}\right) N_{1}\right] L(t)
$$

and defining $\tilde{N}_{1}=N_{1}-\frac{\sigma_{0} N_{\text {pix }}}{\sigma_{1}+\sigma_{0}}$ and and $\gamma=\sigma_{0}+\sigma_{1}$ we have

$$
\dot{\tilde{N}}_{1}=-\gamma \tilde{N}_{1} L(t)
$$

which is easily solvable into

$$
\tilde{N}_{1}=A \mathrm{e}^{-\gamma \mathcal{L}(t)}
$$

with $\mathcal{L}(t)$ being the integrated luminosity.

- This leads to

$$
\begin{gathered}
N_{1}(t)=N_{1}(0) \mathrm{e}^{-\gamma \mathcal{L}(t)}+\frac{\sigma_{0}}{\gamma} N_{\text {pix }}\left[1-\mathrm{e}^{-\gamma \mathcal{L}(t)}\right] \\
N_{0}(t)=N_{\text {pix }}-N_{1}(t)
\end{gathered}
$$

