

ATLAS Pixel Detector Leakage Current

<u>Aidan Grummer</u> (University of New Mexico)

On behalf of the ATLAS Collaboration

Radiation Damage Workshop CERN 23 April 2018

Introduction

- First report of leakage current data in the ATLAS Pixel Detector B-Layer, Layer-1, Layer-2 and the 2×3 Disks in LHC Run 2 through Nov. 2017
 - Also shown are the LHC Run 1 leakage current data
- Comparison of fluence predictions by Pythia8 and FLUKA to the fluence determined from leakage current data combined with the Hamburg Model* is made for B-Layer, Layer-1, and Layer-2
- Further investigations of fluence predictions for the IBL are made using various Pythia 8 minimum bias tunings combined with FLUKA and Geant 4

^{*} M. Moll et al., Leakage Current of Hadron Irradiated Silicon Detectors - Material Dependence. Nucl. Instrum. Meth. A, 426(87), 1999.

Introduction (II)

- Predictions have been made with the Hamburg Model and were found to underestimate the leakage current data throughout LHC Run 2 for B-Layer, Layer-1, and Layer-2
- Hamburg Model predictions were found to overestimate the leakage current data in the IBL

Expectations of the Measurement

• Leakage current in silicon sensors is an indicator of received fluence and radiation damage

$$\Delta I = \alpha \cdot \Phi \cdot V$$

- Here, ΔI is the difference in leakage current at fluence Φ relative to the value before irradiation of the physical volume V, and is the current-related damage coefficient α
- The ATLAS measured leakage current grows linearly with delivered luminosity and demonstrates various annealing responses to temperature changes as expected

Measurement Procedure Details

- Measurements of Run 1 leakage current use the HVPP4 data collection subsystem as reported in the Run 1 ATLAS note*
- LHC run 2 leakage current measurements are made using HVPP4 data with power supply leakage current data to confirm and augment the measurement
- The leakage current data are restricted to when high voltage is applied across the silicon sensors and when the LHC beams are declared stable

* ATLAS Collaboration, A leakage current-based measurement of the radiation damage in the ATLAS Pixel Detector, 2015 JINST 10(04) C04024,

http://cdsweb.cern.ch/record/1752122/files/ATL-INDET-PUB-2014-004.pdf

A. Grummer

Further Measurement Procedure Details

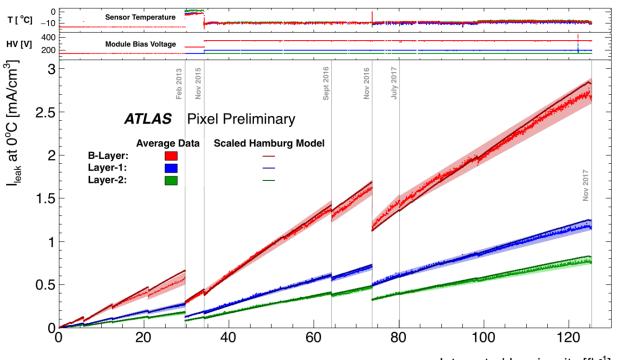
• For both data and the Hamburg Model prediction, the leakage current is corrected to 0°C using the equation:

$$I(T) = I(T_R)/R(T)$$
, where $R(T) = (T_R/T)^2 \cdot \exp\left(-\frac{E_{eff}}{2k_B}(1/T_R - 1/T)\right)$

• The silicon activation energy is assumed to be $E_{eff} = 1.21 \text{ eV}^{\dagger}$

A. Grummer

[†] A. Chilingarov, Temperature Dependence of the Current Generated in Si bulk, 2013 JINST 8(10) P1000, <u>http://iopscience.iop.org/article/10.1088/1748-0221/8/10/P10003</u>

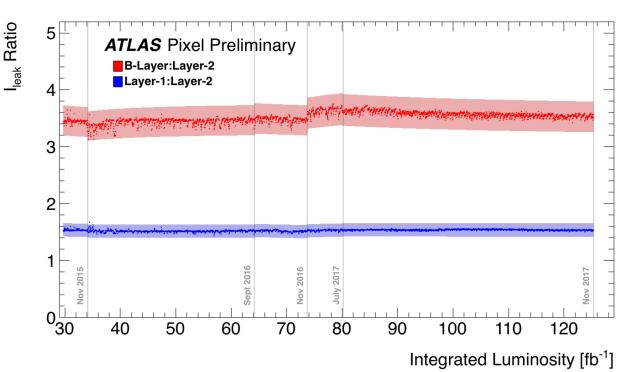

N.

Hamburg Model Predictions

- Hamburg Model predictions are made in four bins in the barrel layers
- Luminosity to fluence conversions are made using the FLUKA simulation and have a symmetric z-dependence around the interaction point
- The predictions are fit to the data with a luminosity– to-fluence factor in each of the four bins and then averaged to compare to the average measurements.
 - Luminosity–to-fluence factors range from ~ 1.2 further from the interaction point in z to ~ 1.45 closer to the interaction point in z

Leakage Current in Pixel Barrel

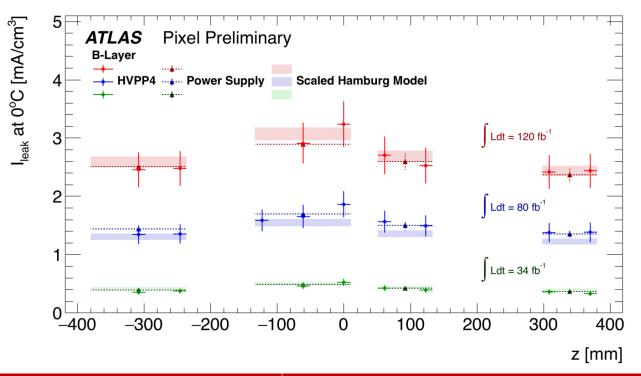
- Average leakage current data compared to the average scaled Hamburg Model predictions for each barrel layer through 2017
- The Hamburg Model predictions have been scaled to match the measured leakage current data



Integrated Luminosity [fb⁻¹]

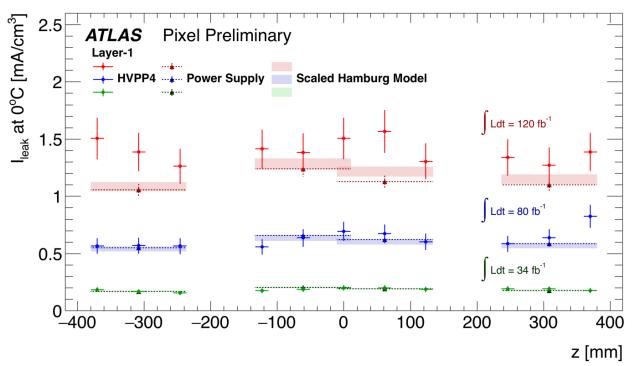
- Measurements on each layer are averaged over a representative sample of modules in η and ϕ .
- The measurements are consistent with expected higher levels of radiation for sensors closer to the beam line.
- The Hamburg Model fit is qualitatively good over the entire range

Ratios of Leakage Currents in Barrel Layers


- Ratios of the various Pixel Detector barrel layer leakage current data for LHC Run 2
- Some dates corresponding to extended periods when the LHC beam was off are displayed for reference.

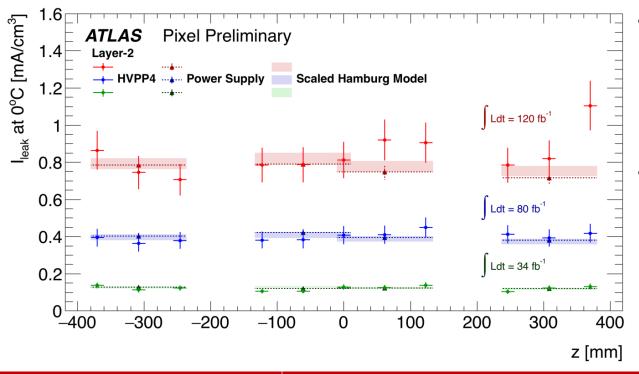
- The ratios are expected to be flat
- The vertical axis is proportional to the ratio of the applied fluence

B-Layer Z-binned Leakage Current


- Z-binned **B-Layer** leakage current data at three values of integrated luminosity.
- Single module precision is shown with HVPP4 data and multiple module precision is shown with the power supply leakage current data

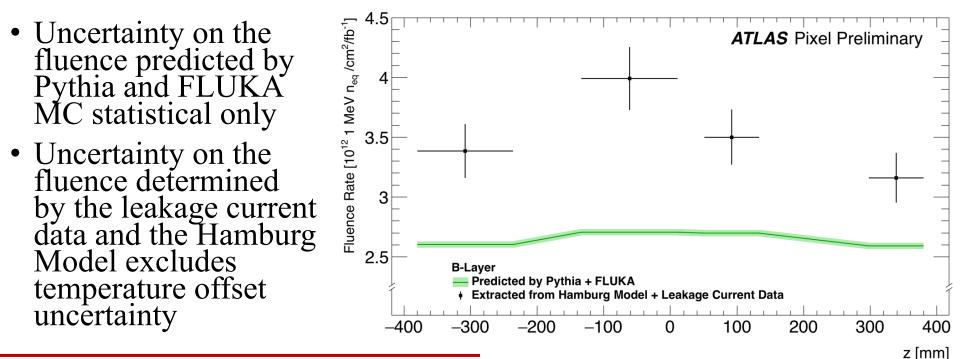
- The z-dependent scaled Hamburg Model predictions are also shown
- We see agreement and consistency between measurement methods

Layer-1 Z-binned Leakage Current


- Z-binned Layer-1 leakage current data at three values of integrated luminosity.
- Single module precision is shown with HVPP4 data and multiple module precision is shown with the power supply leakage current data

- The z-dependent scaled Hamburg Model predictions are also shown
- Overlapping bins are due to simultaneous module measurements by the power supply subsystem

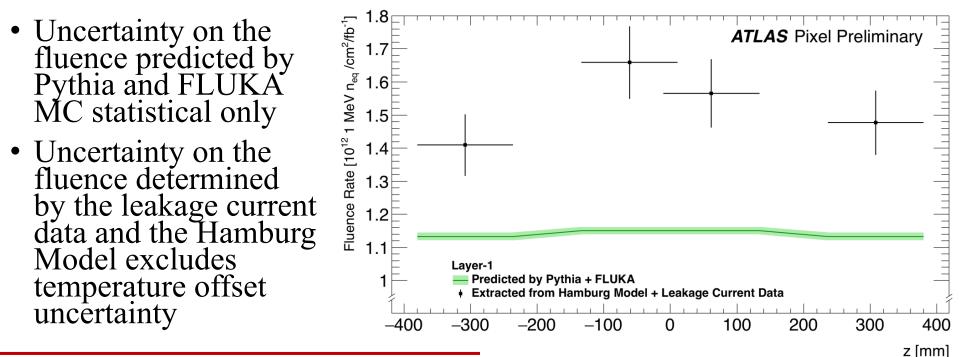
Layer-2 Z-binned Leakage Current


- Z-binned Layer-2 leakage current data at three values of integrated luminosity.
- Single module precision is shown with HVPP4 data and multiple module precision is shown with the power supply leakage current data

- The z-dependent scaled Hamburg Model predictions are also shown
- Overlapping bins are due to simultaneous module measurements by the power supply subsystem

B-Layer Fluence Comparison

- Comparison of fluence predictions by Pythia 8 and FLUKA to the fluence determined from leakage current data combined with the Hamburg Model, for the **B-Layer**
- Fluence predictions by Pythia8 and FLUKA are weighted averages of the fluence predicted at three energy levels throughout the full period of operation as of November 2017.

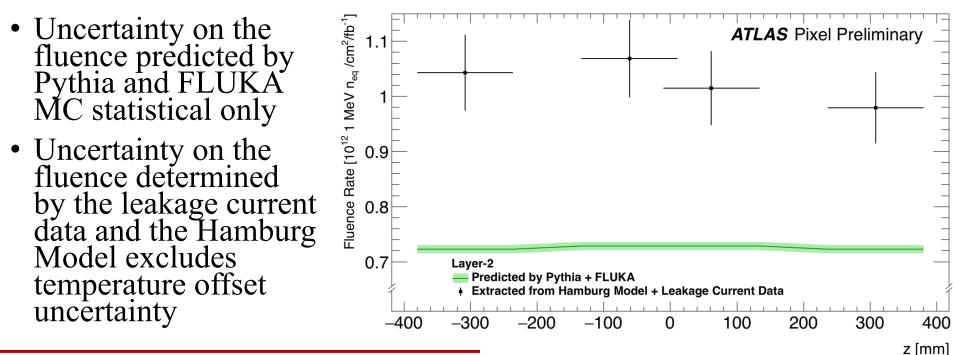


Pythia tuning: A2M_MSTW2008LO. See ref. on slide 19

NN N

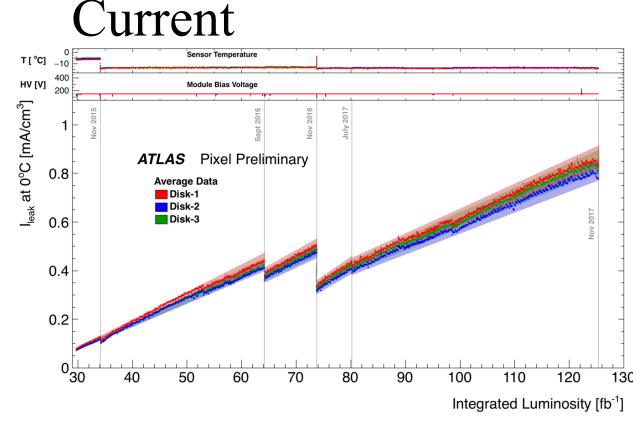
Layer-1 Fluence Comparisons

- Comparison of fluence predictions by Pythia 8 and FLUKA to the fluence determined from leakage current data combined with the Hamburg Model, for the Layer-1
- Fluence predictions by Pythia8 and FLUKA are weighted averages of the fluence predicted at three energy levels throughout the full period of operation as of November 2017.



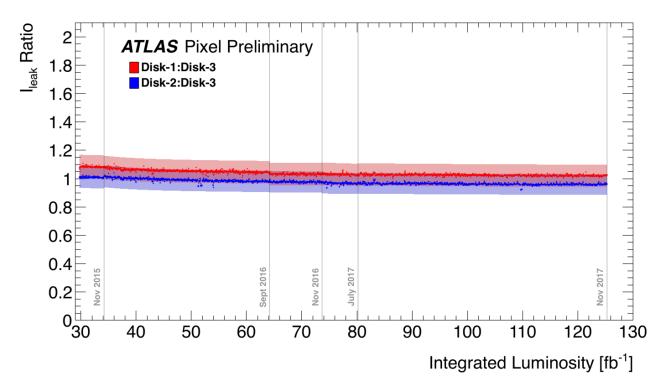
Pythia tuning: A2M_MSTW2008LO. See ref. on slide 19

Layer-2 Fluence Comparisons


- Comparison of fluence predictions by Pythia 8 and FLUKA to the fluence determined from leakage current data combined with the Hamburg Model, for the Layer-2
- Fluence predictions by Pythia8 and FLUKA are weighted averages of the fluence predicted at three energy levels throughout the full period of operation as of November 2017.

Pythia tuning: A2M_MSTW2008LO. See ref. on slide 19

Average Measured Disk Leakage


- Average measured leakage current data of a representative sample of modules in the ATLAS Pixel detector disks for the LHC Run 2 period of operation.
- Disk-1, Disk-2, and Disk-3 show comparable values of leakage current.

- Each disk corresponds to both side A and side C of the Pixel Detector.
- The average module sensor temperature is shown in the top panel.
- The average module bias voltage is shown in the middle panel.

A. Grummer

Ratios of Leakage Currents in Disks

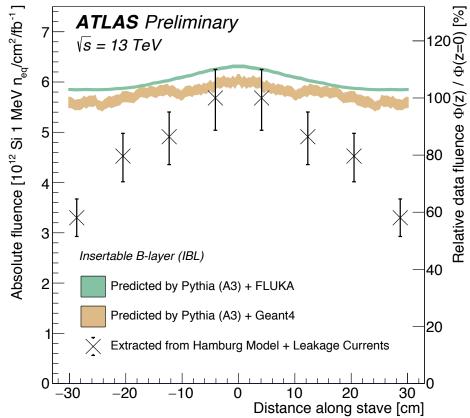
- Ratios of Disk-1 and Disk-2 leakage current data to Disk-3 leakage current data for the LHC Run 2 period of operation.
- The ratios are expected to be flat
- The vertical axis is proportional to the ratio of the applied fluence

IBL Fluence

- The IBL leakage current data were reported at the RD50 meeting in November 2017*
- Hamburg Model predictions were found to overestimate the leakage current data for the IBL
- Dedicated studies of fluence simulation using FLUKA** and Geant 4^{†‡} are ongoing and will be discussed later in the workshop.

A. Grummer

^{*} Nick Dann, ATLAS pixel and strip rad damage measurements, RD50 Workshop https://indico.cern.ch/event/663851/contributions/2711512/


^{**} S. Baranov et al., Estimation of Radiation Background, Impact on Detectors, Activation and Shielding Optimization in ATLAS, (2005), <u>http://inspirehep.net/record/1196420/</u>

[†] GEANT4 Collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

[‡] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].

Comparison of FLUKA and Geant 4

- Fluence predictions made with Pythia 8 + FLUKA and Pythia 8 + Geant 4 are compared to the fluence determined with the leakage current data and Hamburg Model.
- Both FLUKA and Geant 4 use the Pythia 8 simulation tuned with MSTW2008LO PDF with A3* minimum bias (in place of the previously studied A2[†] minimum bias)
- See presentations by Paul Miyagawa[‡] and Sven Menke^{**} later in the workshop

* ATLAS Collaboration, A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-Landshoff diffractive model, ATL-PHYS-PUB-2016-017, https://cds.cern.ch/record/1474107 * ATLAS Collaboration, Summary of ATLAS Pythia 8 Tunes, ATL-PHYS-PUB-2012-003, https://cds.cern.ch/record/2206965

Paul Miyagawa, ATLAS simulation overview, <u>https://indico.cern.ch/event/695271/contributions/2942436/</u>
** Sven Menke, ATLAS radiation background studies using GEANT4 & GRID
https://indico.cern.ch/event/695271/contributions/2942614/

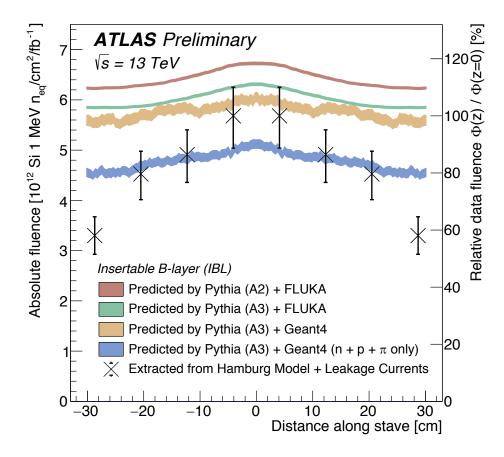
A. Grummer

Final Comments

- This was a first report of the leakage current data in the ATLAS Pixel Detector B-Layer, Layer-1, and Layer-2 and Disks through LHC Run 2
- We saw that the Hamburg Model predictions underestimate the leakage current data for B-Layer, Layer-1, and Layer-2 while they overestimate the leakage current data on the IBL
- There is a strong z-dependence on the fluence in the IBL leakage current data and a significant z-dependence on the B-Layer
- Studies of various fluence simulations have been shown in an effort to improve the comparison with the fluence determined from the leakage current data and Hamburg Model

Backup Slides

Measurement Uncertainty


- The measurement uncertainty for HVPP4 in Run 1 was found to be 12.5% *
- The uncertainty on measured leakage current for LHC Run 2 Power Supply modules is 5.4%, calculated by adding the following uncertainties in quadrature:
 - Power Supply precision on current measurements contributing 4% uncertainty
 - Current measurements made approximately once per minute contributing 0.5%
 - Uncertainty on the luminosity is 2.4% **
 - Uncertainty on temperature measurements contributing 2.9% (do not include uncertainty in temperature offset)

A. Grummer

^{*} ATL-INDET-PUB-2014-004 ** https://twiki.cern.ch/twiki/bin/view/Atlas/LuminosityForPhysics

Fluence Simulation Comparisons

- A comparison of fluence predictions made with FLUKA and Geant4 are compared to the fluence determined with the leakage current data and Hamburg Model.
- The Pythia 8* simulation tuned with A2 minimum bias and Geant 4 accounting for neutrons, protons and pions only are also compared.

*See references on slides 18 and 19