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Introduction - Radiation Damage
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Leakage currents and depletion voltage have been monitored for a long time. 
Less work on studies of cluster and track properties.  
Different effects to account for:

• reduced hit detection efficiency 
clusters are entirely lost if all 
pixel below threshold


• reduced cluster size and worse 
resolution 

clusters are reduced in size if 
some pixel are below threshold

 Pixel charge subtraction [e]
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Introduction - Radiation Damage
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Tracking and pixel performance can directly impact physics analysis.
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• Some analysis directly use 

clusters properties and are 

directly affected


• Many more analyses that use 

tracking, in the future will also be 

effected.

Important to account for these effects and have correct predictions

https://link.springer.com/article/10.1140/epjc/s10052-015-3609-0


Introduction - Prediction

• Charge collection efficiency: less charge collected due to trapping 
MPV of fitted Landau

Normalized to 2015 data 

sensors at |ɸ|=0


• Lorentz Angle: radiation damage increase it 
Function of incidence angle of the particles

Negligible for 3D sensors
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Presenting results using a standalone tool (Allpix) based on Geant4 and the first full 
implementation in the ATLAS simulation framework (Athena).  

Two important observable sensitive to radiation damage:

https://twiki.cern.ch/twiki/bin/view/Main/AllPix#Working_with_the_AllPix_Framewor


Fluence levels

5 Lorenzo Rossini -  INFN and Università di Milano - Trento Workshop

High flux of particles means high radiation fluence on the sensor.

• Already enough fluence to study 

effects on sensors


• new IBL sensors are closer to 

the beam and already have 

much more fluence than the 

other layers that saw all of Run 1
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ATLAS Pixel Detector Performance
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Radiation damage effects in the sensor already visible
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decrease and is recovered 

by increasing HV 

With our simulations we may 

be able to help predict it



Bias Voltage Scan
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Using standalone simulation (see slides from Trento Workshop) to predict MPV of 
the fitted landau distribution of the ToT as a function of bias voltage for fixed fluence. 
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 (end 2018)2/cmeq n14=8.7 10φStandalone Simulation: 

ATLAS

Preliminary

IBL planar modules

• Both data and simulation charge 

to ToT are tuned at the same 

value 


• Good agreements in both shape 

and plateau position


• Correct Bias Voltage Working 

point to avoid under depletion 

End 2017

End 2018

https://indico.cern.ch/event/666427/contributions/2881831/attachments/1603791/2543967/TrentoWorkshop_slides_RadDamDig_wl.pdf
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Model Predictions and Data Comparison
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Charge Collection Efficiency as a function of Luminosity for IBL with 
data from Run 2 

• Using Trapping constant for electrons  
and holes:


βe = 4.5±1.0  10-16 cm2/ns

βh = 6.5±1.5  10-16 cm2/ns


• Simulation points error bars 

1  x: 15 % on fluence-to-luminosity 
conversion

2  y: radiation damage parameter 
variations 


• Data points error bars 

1  x: 2% on luminosity

2  y: ToT-charge calibration drift

Good agreement with data, but very large uncertainties 
Essential to understand what operational condition to use in the future

End 2016
End 2017

End 2018
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Lorentz angle
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tan ✓integratedL (zinitial, zfinal) =
rB

|zfinal � zinitial|

Z zfinal

zinitial

µ(E(z))dzLorentz Angle:

Mobility

Hall scattering factor

Intrinsic dependence on the E field and final and initial position

E-field Lorentz Angle



• The IBL was operated at -150 V 

in 2016


• Fit distribution with: 

α is the incidence angle


G(α) a gaussian function


θL is the Lorentz Angle

Lorentz Angle
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Mean transverse cluster size distribution as a function of incidence 
angle on the module
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Lorentz angle
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• Lorentz Angle not sensitive to 

trapping, so it provides orthogonal 

information to CCE.


• Difference of Lorentz angle from 

first point


• Errors include variations of the 

radiation damage parameters

Fit Lorentz Angle from data and simulation. Plot as a function of integrated 
luminosity
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Trend is robust but we can’t make precise predictions yet (very sensitive to radiation 
model parameter variations)



Spatial resolution
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Using only clusters with 
two pixels in the 
transverse coordinate. 
  
Reweighting run-by-run 
to ensure that their |η| 
distribution is constant 
for the dataset 

Not yet a huge impact on spatial resolution.  
 
Effects from different sources: Change in HV, temperature and tuning. 

Determined by the corrected transverse positions of the two reconstructed IBL clusters 
associated to a charged particle track in the regions where the IBL modules overlap.  
See: ATL-INDET-PUB-2016-001.
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https://cds.cern.ch/record/2203893?ln=it


Outlooks: Full ATHENA simulation
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Simulations now integrated in the ATLAS Simulation framework. 
First results to use for predictions for operations

• Average of cluster dE/dx for 
tracks with pT>1 GeV


• Only some “benchmark” 
point to summarize detector 
behavior.


• Lower boxes indicate:

corresponding fluence 

corresponding bias voltage
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Outlooks: Annealing
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TCAD simulation doesn’t account for thermal history: no annealing effects included 
Use Hamburg Model to model annealing:
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• set the average charge 

distribution in the sensor to 

match the Neff concentration 

predicted by Hamburg model. 


• Hamburg model fitted to data. 


• See talk from Julien: here 

• Ad hoc correction. Will probably 

not work on the long term

Need more viable solutions when annealing is very important and Hamburg 
model assumptions (uniform space charge) break down

https://indico.cern.ch/event/695271/contributions/2958674/attachments/1637640/2613544/beyer_depl_volt_ATLAS.pdf


Conclusions
• Effects of radiation damage are already visible 


Charge loss (dE/dx)

• Not a huge impact on spatial resolution

• We produced simulations that are in good agreement with 

Run 2 data, in terms of

Charge collection efficiency

Lorentz angle 


• Predictions useful for: 

Decide pixel detector operation condition

Improve our modeling of data for physics analysis


• We are now prepared to model the radiation  degradation for 
Run 2+3 and for HL-LHC
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Conclusions
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BACK UP



Fluence
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• FLUKA prediction validated with 
leakage current and Hamburg 
model:


Assign 15% uncertainties in the 
central region (|z|~0)
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Electric Field simulations
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Radiation damage produces defects in the sensor that change the effective doping 
concentration

• Depletion voltage and Electric 
Field profile depends on:


Fluence

Type of irradiation

Temperature during and after 
irradiation (annealing) 


• Electric Field is simulated with 
TCAD technology


TCAD first step on which 
build the simulations 

• Typical double junction effect well 
described →”U” shaped E-Field

Radiation Damage model from: V. Chiochia et al., Nucl. Instr. and Meth A 568 (2006) 51-55
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Trapping probability
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Defects form in the silicon and are sites for charge trapping

• 𝜏 is a random variable exponentially 
distributed with mean value 1/(βh/eɸ)


ɸ is the fluence

βh/e is the trapping constant: different 
for electrons and holes

βe = 4.5±1.0  10-16 cm2/ns

βh = 6.5±1.5  10-16 cm2/ns

Average of neutron and proton 
irradiation studies


• Trapped charges induce a partial signal on 
the electrode, given by:


-q(Rf-Ri):

• Rf and Ri are the Ramo potential in final and 

initial positions

Charges are trapped if the time to reach the electrode is larger than a trapping time 𝜏

ATLAS Pixel Preliminary



Trapping probability
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Different trapping constant for electrons and holes
• Trapping probability depends on time of 

annealing 

• Different results for type of irradiation (protons 

vs neutrons) and temperature

• Two main sources for these values


G. Kramberger et al., NIM A481 (2002) 297. 
Plot: trapping constant as a function of 
annealing time

O. Krasel et al., IEEE Trans. Nuc. Sci. 51 
(2004) 3055. Plot: mean half life for 
ɸ=4·1014neq/cm2


• In simulation use average of two values

• Errors account for:


differences between two groups

annealing effects

measures uncertainties

Kramberger

Krasel

ɸ=4·1014neq/cm2


