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Inspired by 
Sherpa 1.1 paper

Spanning 10-20 m up to 1 m 
can take O(min/event)

MC Simulation in ATLAS
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Inspired by 
Sherpa 1.1 paper

MC Simulation in ATLAS

Hard-scatter
MadGraph 5 / aMC@NLO 

POWHEG-BOX

Fragmentation 
Pythia, Herwig, Sherpa

Material Interactions 
Geant 4

Digitization
Custom code

this 
talk
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4Brief reminder - ATLAS Pixel Detector

4 pixel layers

Outer three layers

Innermost layer

50 x 400 x 250 µm3 

50 x 250 x 200 µm3 

FEI3 readout 
chip (8 bit ToT)

FEI4 readout 
chip (4 bit ToT)

3.3 cm from interaction point; includes 3D sensors at high |z|.
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uniform distribution
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N.B. Geometry 
model is not 
this detailed

Latest simulation: Bichsel 
model for charge spreading

d-rays from G4 
(no access to bg); 
only for p,p,k,µ,e

when used, 
ignore G4 input

too slow out of the box - 
use a number of speedups:

- 5 fundamental collisions / sampling 
- coarse cross-section tables
- make chunks of size 50 charges

With these, no longer limiting and can 
be run in our main MC simulation!

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.60.663
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Figure 5: Position residual distribution ⌘ = 2
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Figure 1: Data-MC comparisons of the transverse (a,b) and longitudinal (c,d) impact parameter significance values
for IP3D selected tracks in the leading jet of the Z ! µµ + jets dominated sample. The plots in the upper row show
the transverse impact parameter while the longitudinal impact parameters are shown in the lower row. The plots on
the left are for the 2016 configuration and on the right for the 2017 configuration discussed in the text.
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2.2 High Field Mobility108

There is some ambiguity in how to extend the above models to high fields4. Some of the low field109

models predict the critical electric field (Ec) and the saturation velocity (vs) from which µ0 = vs/Ec (1,3),110

others predict Ec and µ0 which gives vs = µ0Ec (2) and others still predict µ0 directly (4-10). Many111

extrapolations to high field use the carrier velocity, for which Eµ0 is a reasonable choice. This creates a112

slight mis-match when a model does predict vs because µmodel 1
0 E/vmodel 2

s = E/Emodel 1
c ⇥(vmodel 1

s /vmodel 2
s .113

Silvaco and Synopsis exclusively use extensions based on velocity; alternative models in terms of Ec114

are also listed below. There are generally three parameterizations for the high field behavior and for115

each parameterization, there are multiple choices for the parameters themselves. First are the three116

parameterizations:117

1. Extended Thomas [13]. The original result used E/Ec as in Eq. 20, but since that time, results118

based on µ0E/vs as in Eq. 21 are also common.119

µ(T, E) = µ0(T )
2666641 +

 
E

Ec (T )

!�377775
�1/�

(20)

µ(T, E) = µ0(T )
2666641 +

 
µ0(T )E

vs (T )

!�377775
�1/�

(21)

2. Hänsch [24]. Once again, the extrapolation could use the critical electric field instead of vs, but120

Eq. 22 uses the velocity as it is more commonly used (was also used in the original paper).121

µ(T, E) = 2µ0(T )
2666664
1 + *,1 +

 
2µ0(T )E

vs (T )

!�+
-

1/�3777775
�1

(22)

3. Hamburg-Trofimenko� [22, 23, 25]. The model was particularly tailored for high fields, E >122

2.4 kV/cm. Di�erent parameterizations are given for electrons (Eq. 23) and holes (Eq. 24).123

µe (T, E) =
⇥
1/µe,0 + E/vs

⇤�1 (23)

µh (T, E) =
8>><>>:

µh,0 E < E0f
1/µ0,h + b(E � E0) + c(E � E0)2

g�1
E � E0

(24)

Table 2.2 shows the parameters proposed in the literature for the above high field models. In principle,124

any one of the low-field models can be matched with any of the high-field models resulting in 70 total125

models. Note that now all of the model combinations are sensible - for example, the Extended Hamburg-126

Trofimenko� model was optimized using the Hamburg-Trofimenko� low field mobility; any other low127

field mobility will result in a sub-optimal model. This will be an important consideration when selecting128

the models after studying their predictions for the ATLAS pixel detector in Sec. 3.129

4 Typical depletion voltages are 4kV/cm and can be up to an order of magnitude larger for irradiated sensors.

29th November 2017 – 23:24 8

values from 
Jacoboni et al. 
review article 

µe,0 = 1533.7 cm2/(V · s)⇥ (T/300)�2.42

https://www.sciencedirect.com/science/article/pii/0038110177900545
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Table 2.2 shows the parameters proposed in the literature for the above high field models. In principle,124

any one of the low-field models can be matched with any of the high-field models resulting in 70 total125

models. Note that now all of the model combinations are sensible - for example, the Extended Hamburg-126

Trofimenko� model was optimized using the Hamburg-Trofimenko� low field mobility; any other low127

field mobility will result in a sub-optimal model. This will be an important consideration when selecting128

the models after studying their predictions for the ATLAS pixel detector in Sec. 3.129

4 Typical depletion voltages are 4kV/cm and can be up to an order of magnitude larger for irradiated sensors.

29th November 2017 – 23:24 8

values from 
Jacoboni et al. 
review article 

µe,0 = 1533.7 cm2/(V · s)⇥ (T/300)�2.42
N.B. µ scaled by 10% 
to match data.  Source 
now understood - typo 

in review article!

https://www.sciencedirect.com/science/article/pii/0038110177900545
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under the influence of the electric field, with a field- and temperature-dependent mobility. The number120

of fundamental charges per chunk is set to be small enough so that the over-estimation of fluctuations is121

negligible. A field- and temperature-dependent Lorentz angle is combined with the mobility to compute122

the time for a charge carrier to be collected (Sec. 3.4,3.5). This time is compared to a fluence-dependent123

trapping time (Sec. 3.6), the characteristic time a charge carrier will travel before it is trapped. If the drift124

time is longer than the trapping time, the chunk is declared trapped. The location of the chunk at the125

trapped position is calculated based on the starting position and trapping time (Sec. 3.4). Since moving126

charges induce a current in the collecting electrode, signal is induced on electrodes from trapped charges127

as well. This induced charge also applies to neighboring pixels, which contributes to charge sharing. The128

induced charge from trapped chunks is calculated from the initial and trapped positions using a weighting129

potential (Sec. 3.7). The sum of the collected and induced charge is then converted into a time over130

threshold (ToT) [26] that is used by cluster and track reconstruction tools.131
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Figure 2: A schematic diagram (left) and a flowchart (right) illustrating the components of the digitizer model
described in this article. Left: the blue line represents a MIP traversing the pixel sensor; groups of electrons and
holes are transported to the electrodes (one pair shown for illustration; in practice, there are many), under the
influence of electric and magnetic fields. Electrons or holes may be trapped before reaching the electrodes, but still
induce a charge on the primary and neighbor electrodes. Right: the digitizer takes advantage of pre-computation
to re-use as many calculations as possible. Various global inputs (fluence, annealing, etc.) are validating using
standalone studies based on particle production / transport codes as well as analytic models for the time-dependence
of defect states.
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See talk at last RD50 meeting
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under the influence of the electric field, with a field- and temperature-dependent mobility. The number120

of fundamental charges per chunk is set to be small enough so that the over-estimation of fluctuations is121

negligible. A field- and temperature-dependent Lorentz angle is combined with the mobility to compute122

the time for a charge carrier to be collected (Sec. 3.4,3.5). This time is compared to a fluence-dependent123

trapping time (Sec. 3.6), the characteristic time a charge carrier will travel before it is trapped. If the drift124

time is longer than the trapping time, the chunk is declared trapped. The location of the chunk at the125

trapped position is calculated based on the starting position and trapping time (Sec. 3.4). Since moving126

charges induce a current in the collecting electrode, signal is induced on electrodes from trapped charges127

as well. This induced charge also applies to neighboring pixels, which contributes to charge sharing. The128

induced charge from trapped chunks is calculated from the initial and trapped positions using a weighting129

potential (Sec. 3.7). The sum of the collected and induced charge is then converted into a time over130

threshold (ToT) [26] that is used by cluster and track reconstruction tools.131
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Figure 2: A schematic diagram (left) and a flowchart (right) illustrating the components of the digitizer model
described in this article. Left: the blue line represents a MIP traversing the pixel sensor; groups of electrons and
holes are transported to the electrodes (one pair shown for illustration; in practice, there are many), under the
influence of electric and magnetic fields. Electrons or holes may be trapped before reaching the electrodes, but still
induce a charge on the primary and neighbor electrodes. Right: the digitizer takes advantage of pre-computation
to re-use as many calculations as possible. Various global inputs (fluence, annealing, etc.) are validating using
standalone studies based on particle production / transport codes as well as analytic models for the time-dependence
of defect states.
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as well. This induced charge also applies to neighboring pixels, which contributes to charge sharing. The128
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Figure 2: A schematic diagram (left) and a flowchart (right) illustrating the components of the digitizer model
described in this article. Left: the blue line represents a MIP traversing the pixel sensor; groups of electrons and
holes are transported to the electrodes (one pair shown for illustration; in practice, there are many), under the
influence of electric and magnetic fields. Electrons or holes may be trapped before reaching the electrodes, but still
induce a charge on the primary and neighbor electrodes. Right: the digitizer takes advantage of pre-computation
to re-use as many calculations as possible. Various global inputs (fluence, annealing, etc.) are validating using
standalone studies based on particle production / transport codes as well as analytic models for the time-dependence
of defect states.
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as well. This induced charge also applies to neighboring pixels, which contributes to charge sharing. The128
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Figure 2: A schematic diagram (left) and a flowchart (right) illustrating the components of the digitizer model
described in this article. Left: the blue line represents a MIP traversing the pixel sensor; groups of electrons and
holes are transported to the electrodes (one pair shown for illustration; in practice, there are many), under the
influence of electric and magnetic fields. Electrons or holes may be trapped before reaching the electrodes, but still
induce a charge on the primary and neighbor electrodes. Right: the digitizer takes advantage of pre-computation
to re-use as many calculations as possible. Various global inputs (fluence, annealing, etc.) are validating using
standalone studies based on particle production / transport codes as well as analytic models for the time-dependence
of defect states.
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of fundamental charges per chunk is set to be small enough so that the over-estimation of fluctuations is121

negligible. A field- and temperature-dependent Lorentz angle is combined with the mobility to compute122

the time for a charge carrier to be collected (Sec. 3.4,3.5). This time is compared to a fluence-dependent123

trapping time (Sec. 3.6), the characteristic time a charge carrier will travel before it is trapped. If the drift124

time is longer than the trapping time, the chunk is declared trapped. The location of the chunk at the125

trapped position is calculated based on the starting position and trapping time (Sec. 3.4). Since moving126

charges induce a current in the collecting electrode, signal is induced on electrodes from trapped charges127

as well. This induced charge also applies to neighboring pixels, which contributes to charge sharing. The128

induced charge from trapped chunks is calculated from the initial and trapped positions using a weighting129

potential (Sec. 3.7). The sum of the collected and induced charge is then converted into a time over130

threshold (ToT) [26] that is used by cluster and track reconstruction tools.131
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Figure 2: A schematic diagram (left) and a flowchart (right) illustrating the components of the digitizer model
described in this article. Left: the blue line represents a MIP traversing the pixel sensor; groups of electrons and
holes are transported to the electrodes (one pair shown for illustration; in practice, there are many), under the
influence of electric and magnetic fields. Electrons or holes may be trapped before reaching the electrodes, but still
induce a charge on the primary and neighbor electrodes. Right: the digitizer takes advantage of pre-computation
to re-use as many calculations as possible. Various global inputs (fluence, annealing, etc.) are validating using
standalone studies based on particle production / transport codes as well as analytic models for the time-dependence
of defect states.
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Even trapped charges 
contribute to the total 

(induced) charge; also 
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22Conclusions and Future Outlook

Geant 4 is workhorse for material interactions, but 
significant part of ATLAS pixel digitization is custom

Many physical effects to consider, but 
also a lot of data to constrain models!

We are always trying to improve our models, even in 
the absence of the new radiation damage digitization

We all have silicon sensors and so it is very useful to 
compare notes and take the best of all our approaches!
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First simulation 
results with the 

fully implemented 
digitizer model in 

the ATLAS 
framework! 

 … more on this in 
Lorenzo’s talk


