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CMSSW Simulation
• Geant-based CMS “full sim” production MC w/ digitizers for sub-detectors 
• Use GEANT4 to simulate charge deposition in pixels 

✴ includes fluctuations and large delta rays 
• Assumes uniform E-field across sensor substrate 

✴ technically correct only at “type inversion” 
✴ uniform Lorentz drift 
✴ no carrier focusing at n+ implants 
✴ does have carrier diffusion 

• No trapping or charge induction 
✴ dominant effects in radiation damaged sensor 

• Works remarkably well for unirradiated (lightly irradiated) sensors 
✴ fails badly for heavily irradiated sensors 

• Includes readout effects [ROC thresholds and analog response] 
• Includes dynamic ROC inefficiencies and dead channels 
• FAST 
• Soon to include realistic sensor and radiation effects by re-weighting 

clusters from Pixelav-simulated 2D cluster shapes
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Created to interpret beam tests of irradiated sensors, now used to 
perform Lorentz calibrations and generate template profile shapes: 

• charge deposition model based on Bichsel π-Si x-sections 
• delta ray range: Continuous Slowing Down Approx + Nist Estar dedx 
• plural scattering and magnetic curvature of delta ray tracks 
• carrier transport from Runge-Kutta integration of saturated drift

Pixelav Detailed Simulation

✴ electric field map from ISE 
TCAD simulation of pixel cell 

✴ includes diffusion, trapping, and 
charge induction on implants 

• Electronic Simulation: noise, 
linearity, thresholds, mis-calibration
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• secondary e- energies from 8 eV to 1 MeV 
• highest energy secondaries travel 1-2 mm 
• most emitted at 90deg wrt primary 
• plural scattering + magnetic curvature 
• range/dEdx from NIST Estar calculations 
• average of 1 eh pair for each 3.68 eV of 

deposited ionization

Charge Deposition
Charge deposition via Bichsel differential cross sections (depend on βγ)

Bichsel: 1988+2005
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The high energy secondaries [“delta rays”] produce a “tail” at large 
charge.  Plotting Q/track length for a sample of real pixel clusters
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Detailed Simulation

Px Py

• Model describes observed cluster charge distribution very well 
• Charge scale [no free parameters] agrees with measured distribution 

to within a few x 0.1%
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• Electric field calculation: uses TCAD 9.0 software 
- simultaneously solves Poisson and carrier continuity eqs 
- includes lots of semiconductor physics (including SRH) 
- simulate 1/4 (1/2) pixel cell to keep mesh size ~17000 (25000) 

nodes.  This requires 4-fold (2-fold) symmetry. 
- no process simulation, use MESH w/ analytic doping profiles to 

generate grid and doping files
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• Transport calculations are done by integrating the fully saturated 
equation of motion for the carriers [in time] 

- each carrier is described by 4-vector (t,x,y,z) [useful for trapping] 
- 5th-order R-K technique w/ adaptive step-sizing is vectorized for 

x86-64 and ppc processors 
- transport done in full 3D for e /h [new pix/str], or e+h [irr pix/str] 
- incorporates diffusion + trapping (Llubjana trapping rates) 
- signal induced from displaced, trapped charge is calculated from 

segmented parallel plate cap. model 
- special versions to consider time-dep response functions [eg 

deconvolution mode for CMS strips] 
• Electronics Simulation: 

- includes leakage current and electronic noise 
- readout chip thresholds 
- readout chip analog response from measurements 
- ADC digitization  7
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Pixelav Simulated Custer

• simulation transports only 1/10 carriers to save time 
✴ the charge fluctuations are large enough that the statistics are 

unaffected by this 
• Figure above is even sparser to aid clarity.
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Pixelav in Production

  Pixelav
(detailed sim)

T, rH, F

Simulated Data:
- charge distribution
- size distributions
- shape probabilities
- Lorentz angle cals
  *clust size vs cot(a)
  *grazing angle
- extracted E-field 
   profiles

Calibrations:
- Standard Reco
  * Lorentz corrs
  * error estimates
- Template Reco
  *1D cluster shapes
  *error estimates
  *probability info
  *2D cluster shapes

Adjust these to match simulated 
data to measurements

   TCAD
model E-field
with 2-traps 

electronic 
response 
(6 params)

Measure
Ez vs z
profile

The TCAD+Pixelav simulations are tuned to measured distributions

• E-field profiles are extracted from data and compared with simulation 
✴ adjust TCAD sensor modelling to reproduce measured profiles 

• Cluster charge profiles are extracted from data and compared with 
simulation 
✴ adjust pixelav trapping parameters to model Q vs depth 

• Tuned simulations are used to calibrate the hit reconstruction 
✴ 1D cluster shapes for the “template algorithm” 
✴ Lorentz drift corrections for the “generic algorithm” 
✴ Error estimates for both algorithms 
✴ 2D cluster shapes for realistic CMSSW simulation re-weighting
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Drift vs depth [grazing angle technique] was developed by UniZ 
colleagues to calibrate the Lorentz angle 
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Lorentz Angle Calibration 

Read Out Chip (ROC) ROC

Local y (global -z) Local x (global f)

b aB
E

Accumulate the charge centroid [drift] vs depth for a sample of highly 
inclined tracks. The angle is the average Lorentz angle
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Take our drift (x) vs Depth (D) data, fit to a polynomial [5th order] and 
then calculate a local slope [Lorentz Angle] vs D. We then convert it to 
an E vs D curve from the expression
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E-Field Measurement and Template/LA Calibration 
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• depends upon the slope dx/dD 
✴ insensitive to alignment effects 

• insensitive to the knowledge of thresholds 
• insensitive to trapping [displacement is measured at fixed depth]! 
• can be done at operating voltage: no need for bias scans 
• extracts information that is sort of comparable to the simulated E-field 

✴ still need to simulate the extracted fields in this procedure 
• Q vs D distributions can then be used to independently adjust the 

trapping rates for e/h

R300157 L1
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• Run 300157 was taken after 11.8 fb-1: ΦQ = 1.2x1014 cm-2 
✴ the neutron equivalent flux [0.6 hardness] Φeq = 0.72x1014 cm-2 
✴ the electric field is well described by our old model dj57a? 

‣ it was from a sensor that had been exposed to Φeq = 2x1014 cm-2
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The extracted electric field profile is distorted by focusing near the n+ 
implant and other systematic effects.  The good news is that we can 
simulate them [mostly]:
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Compare the measured depth profile with the simulated profile

Trapping Measurement 
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The trapping rates for e and h are both too large!   
How much trapping do we expect for ΦQ = 1.2x1014 cm-2 ? 
In our test beam models, the trapping rates should scale as 
0.8Φeq = 0.48ΦQ = 0.6x1014 cm-2 ?
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Simulate the dj59a E-field with trapping rates corresponding to 0.6x1014 
cm-2

Trapping Measurement 

R300157
dj57a, modified 

 trapping 

• The electric field is evolving faster [differently] than expectations from 
the beam test models 

• Trapping rates appear to be evolving according to the fluence 
calculation with a hardness factor of 0.6 

• The slower evolution of the trapping rates has important 
consequences for the longevity of the detector



CMSSW simulation produces an array P[ix,iy] of pixel charges for a 
simulated hit at local coordinates (x,y) and local track angles (cotα,cotβ)
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Cluster Reweighting Algorithm 

• use 2D template objects to interpolate arrays at (x,y) and (cotα,cotβ) 
✴ G[ix,iy] - the average cluster shape for an undamaged idealized 

sensor with a uniform field [match LA to actual Vbias] 
✴ T[ix,iy] - the average cluster shape for a damaged physical sensor 

• for each element G[ix,iy] > min value, calculate R[ix,iy]= T[ix,iy]/
G[ix,iy] 

• if T[ix,iy] > min value and G[ix,iy] < min value, calculate R[ix,iy]= 
T[ix,iy]/G[ixn,iyn] where ixn, iyn  is the nearest pixel with a 
denominator G[ixn,iyn] > min value (store ixn and iyn too). 

• if there are P[ix,iy] for which R[ix,iy] is undefined, set R[ix,iy] to value 
of nearest defined pixel. 
✴ handles large delta rays 

• calculate output charges O[ix,iy]= R[ix,iy] P[ix(n),iy(n)]
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This produces output clusters with the correct average shapes but reflecting 
the charge fluctuations of the input cluster.  For example (at fluence 
Φ=1.2x1015 neq/cm2, bias voltage 600V, temperature 263K):
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The output cluster is the product of the input cluster and weights
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• Technique captures the larger induced signals from trapped charge 
✴ most evident for the longer drifting carriers on the RH side 
✴ these are mostly less than the ROC threshold on the neigboring 

pixels but also contribute to the pixels with collected carriers.
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Fully simulated Φ=1.2x1015 neq/cm2 clust vs reweighted CMSSW-like clust

Pixelav
Clusters
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Fully simulated Φ=1.2x1015 neq/cm2 clust vs reweighted CMSSW-like clust

• x/y resolutions of Template Reco are within 2% of fully simulated values 
• Binned charge distributions also agree well
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• Pixelav simulation was originally developed to interpret beam test results 
and is now a key part of the pixel hit reconstruction algorithm 
✴ it was developed to model sensor physics as accurately as possible 
✴ speed was a secondary consideration, it was never intended for the 

production simulation of CMS pixel hits 
• CMS has developed techniques to tune the Pixelav simulation parameters 

from collision data 
✴ this is important because beam tests are performed under different 

conditions [eg w/ optimally annealed detectors] with possibly different 
detector materials than normal operations 
‣ models established in beam tests require additional tuning 

• The (fast) CMS production pixel simulation is incorporating a reweighting 
algorithm to include more realistic modelling and irradiation effects 
✴ the simulation and the reconstruction will be synchronized by using 

templated cluster shapes generated from the same models 
‣ simulated events will reflect correct resolution effects using the full 

reconstruction chain

Summary


