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Outline 

u  Properties of heavy flavour  jets   

u  Heavy Flavour tagging algorithms: 
o  Identification of jets from bottom quarks 

o  Identification of jets from charm quarks 

o  Measurements of identification performance on data  

u  Identification of b jets in events with boosted topologies: 
o  AK8 b tagging, subjet b tagging, double-b tagger 

o  Performance measurements in boosted topologies 

u  Performance of b jet identification at trigger level  

u  Preparation for High-Luminosity LHC 

     Except where specified, all material presented is from: 
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arXiv:1712.07158 (submitted to JINST)  
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Properties of Heavy Flavour Jets 
3 
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u  Jet flavour assignment in simulated events:  

o  Generated heavy hadrons used in jet clustering with 
momentum rescaled to a negligible value (ghost hadron) 

o  Jet flavour assignment based on the presence of ghost b or c 

o  Jets not matched to a gen jet (pT>8 GeV) are treated as pileup 
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u  Heavy hadrons from the hadronization of b 
(and c) quarks present special properties: 

o  Long litime: their displaced decays results   
in tracks with large impact parameter (IP)     
and secondary vertices 

o  Large mass: their decays products have a 
higher momentum relative to jet direction 

o  Semileptonic decays: presence of soft 
muons or electrons in the jet 
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b Tagging Algorithms at CMS 

u  Exploiting information from one or more b jet properties 

u  The algorithms provide a discriminant value for each jet 
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Stop: introductory slides for TBT meeting 
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b jet property Algorithms 

Tracks with large impact 
parameters (IP) 

TCHP, TCHE, JP, JBP 

Secondary vertices (SV) SSVHP, SSVHE,  
Inclusive Vertex Finder 

Soft leptons from semi-leptonic B 
decays 

Soft Lepton Taggers 

Multivariate combinations CSV, CSVv2, cMVAv2, DeepCSV, 
DeepFlavour 
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Multivariate Combinations 5 
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u  The new CSVv2 is an evolution of 
the RunI CSV algorithm: 

o  Neural network (NN) instead of 
likelihood ratio allows to combine 
more variables 

o  Secondary vertices from the 
Inclusive Vertex Finder algorithm: 

§  Fitting inclusively the tracks in the 
event, without prior association  
with the jets 

u  The cMVAv2 tagger combines 
the outputs from CSVv2, JP, JBP, 
and soft lepton taggers 
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Deep Learning in b Tagging 

u  Use of more sophisticated neural network classes allows to 
better exploit the information available for b-tagging: 

o  Can combine a large number of input features 

o  Can handle more low-level information 

o  Allows for multi-classification, providing an output probability 
for each jet flavor hypothesis 

u  DeepCSV: a new version of the CSVv2 tagger has been 
developed through the use of deep neural networks (DNN) 

o  Four hidden layers of a width of 100 nodes each 

o  Same track selection and input observables as CSVv2 

o  However, first six most displaced tracks are used instead of first 
four tracks as for CSVv2 
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DeepCSV Tagger 

u  The output of the algorithm 
consists of a probability for 
each of the five classes of jets 
used in the training: 
o  Jet contains exactly one or at 

least two b quarks 

o  Jet contains exactly one or at 
least two c quarks 

o  None of the above 

u  It has been shown that 
summing the probabilities of 
two classes is equivalent to 
doing a combined training: 
o  DeepCSV(b+bb) = 

DeepCSV(b) + DeepCSV(bb) 
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DeepCSV P(b)+P(bb) discriminator
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Algorithm Performances in 2016 
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u  Probability for non-b jets to be 
mis-identified as b jets, as a 
function of the b tagging 
efficiency 

b jet efficiency
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 + jetstt
 > 20 GeV

T
p

Tagger Working point #
b

(%) #
c

(%) #
udsg

(%)

JP L 78 37 9.6

Jet probability (JP) JP M 56 12 1.1

JP T 36 3.3 0.1

CSVv2 L 81 37 8.9

Combined secondary vertex (CSVv2) CSVv2 M 63 12 0.9

CSVv2 T 41 2.2 0.1

cMVAv2 L 84 39 8.3

Combined MVA (cMVAv2) cMVAv2 M 66 13 0.8

cMVAv2 T 46 2.6 0.1

DeepCSV L 84 41 11

Deep combined secondary vertex DeepCSV M 68 12 1.1

(DeepCSV) P(b) + P(bb) DeepCSV T 50 2.4 0.1

u  Three working points defined 
as the cut on the discriminator 
value allowing to reduce the 
mis-identification probability 
for light jets to 10, 1 and 0.1% 
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Algorithm Performances in 2017 
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u  The CMS Phase 1 upgrade included a 
new pixel detector with an additional 
layer, closer to the beam spot  

 
2016 pixel 
detector 

Phase1pixel 
detector 

u  Comparison of DeepCSV 
performance with 2016 
detector, Phase 1 detector 
and 2016 training, and with 
Phase 1 detector and new 
dedicated training 

 
CMS DP-2017/013 

CMS-TDR-011 
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DeepFlavour Tagger 10 

u  Architecture of the DeepFlavour tagger: 

o  No quality requirements applied to charged track selection 

o  Using 16 (6) properties of charged (neutral) particle-flow jet 
constituents, and 17 properties of SVs associated to the jet 

o  Properties of each category engineered by 1x1 convolutional layers 

o  Output is merged to jet global properties and fed to a dense NN 

 

 

CMS DP-2017/013 

u  Expected performance: 

o  4% absolute improvement in 
b-tag efficiency for a mistag 
rate of 0.1% against DeepCSV 

u  Extended to gluon vs quark 
discrimination (DeepJet): 

o  CMS DP-2017/027 
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Identification of c Jets 
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u  The algorithm of c jet identification is based in similar input 
variables and jet vertex categories as defined in CSVv2 

u  In addition, the c-tagger exploits information from the soft 
lepton taggers to add more observables and jet categories  

u  A Gradient Boosting Classifiers (GBC) is used for two trainings 
to discriminate c jets against light (CvsL) and b (CvsB) jets 
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c Jet Tagging Performance 
12 

u  Performance of the c-tagger can be studies by applying 
simultaneously thresholds on CvsL and CvsB to define curves of 
constant c-efficiency in the b vs light mis-id. probability plane 

 

b jet misid. probability
2−10 1−10 1

ud
sg

 je
t m

is
id

. p
ro

ba
bi

lit
y

2−10

1−10

1

charm efficiency contours

 = 0.2 c∈  = 0.6 c∈

 = 0.3 c∈  = 0.7 c∈

 = 0.4 c∈  = 0.8 c∈

 = 0.5 c∈  = 0.9 c∈

CMS
Simulation
 + jetstt
 > 20 GeV

T
 p

13 TeV, 2016c tagger

L

M

T

Working point #
c

(%) #
b

(%) #
udsg

(%)

c tagger L 88 36 91

c tagger M 40 17 19

c tagger T 19 20 1.2

CvsL discriminator
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

C
vs

B 
di

sc
rim

in
at

or

1−

0.5−

0

0.5

1

1.5

2

b jets c jets udsg jets
ML T

CMS
Simulation

 + jetstt
 > 20 GeV

T
p

13 TeV, 2016c tagger  



1Tag 

c Jet Tagging with Multiclassifiers 

u  c taggers can be built from DeepCSV outputs: 

u  DeepCSV is already outperforming the dedicated c-tagger 
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CSVIVF
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u   Samples with different jet flavor 
composition are exploited to 
commission the algorithms: 

o  Inclusive jets from QCD processes 

o  Jets from QCD with an embedded 
soft muon 

o  Top pair production events 

u  To correct b-tagging efficiencies in 
physics analysis, data-to-MC scale 
factors (SFs) are computed for each 
operating point through data driven 
techniques 

 
 

CMS DP-2017/037 

2017 

2016 
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Scale Factors for light Jets 

u  SFs for light-jet mistag rate measured in inclusive jet samples: 
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o  Negative taggers built 
using only tracks with 
negative IP and SVs with 
negative flight distance 

o  Negative tag rate from 
data corrected to 
positive mistag rate 
through a MC derived 
scale factor 
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Scale Factors for c Jets 16 

u  CMS: performance measured in two c-jet enriched samples: 

o  W+c->lνc events, selected by requiring a soft muon in the c-jet 

§  Background subtraction from events with same-sign leptons 

o  ttbar events in lepton+jets final states 

§  Fit to a mass discrimiant λM to extract the c tagging efficiency 
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Scale Factors for b Jets 

u  Scale factor measurements in CMS exploits various methods: 

o  QCD muon-eriched based: PtRel, System8, Lifetime Tagger 

o  ttbar based: kinematic fits in dilepton and lepton+jets channels 

u  Single measurements are combined to reach the best 
precision 

 

17 
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Shape Discriminator Corrections 
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u  Aiming to calibrate the whole b-
tagging discriminator shape: 

o  Designed for analyses that want 
to use the discriminator in a fit or 
a MVA rather then just select jets 
above a certain threshold 

u  Simultaneously determining 
reweighing factors for b and 
light jets by a iterative 
procedure in two different 
samples: 

o  Dilepton ttbar events       

o  Z -> ll events 
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o  B decay products can overlap 
with particles from other jets 

o  Important in many BSM searches 

u  In high energy collisions, particles decaying to b quarks can 
be produced with large momentum (boosted topology): 

 

 

 

u  Two approaches developed during Run1 

u  AK8 b tagging:  
o  b tagging algorithms applied on all the tracks in  

    the reconstructed AK8 jets 

o  Relaxed criteria for assigning tracks and SV to jets 

u  Subjet b tagging: 
o   Soft drop declustering to resolve jet substructure 

o  Applying b tagging criteria on individual subjets  

b-Tagging in Boosted Topologies 
19 
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  b Tagging in Boosted Topologies 
20 
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Stop: introductory slides for TBT meeting 
+ keep steering jobs 

u  Subjet b tagging still baseline for boosted top quarks 

o   CSVv2 algorithm used both for AK8 and subjet b tagging 
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u  Performance for H->bb identification are discussed in the 
next slides  
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Double-b Tagger 21 
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u  In RunII, new dedicated algorithm 
aimed  at tagging boosted decays to 
b pairs: 

o  Exploiting not only the presence of two 
b in the jet, but also the correlations 
between their flight directions 

u  N-subjettiness axes are used to 
associate tracks and vertex to the 
subjets, and to build the input 
observables  
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Performance for H->bb Tagging 
22 
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u  Double-b tagger 
outperforming AK8 and 
subjet b tagging for H->bb 
against multijet and g->bb 
backgrounds  

u  Subjet b tagging has better 
performance against single 
b jet background at low 
AK8 jet pT, where the two 
subjets are very well 
separated 
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Boosted Jet Identification with DNN 
23 

u  Identification of hadronically decaying boosted top quarks 
using deep neural networks 

 

CMS-DP-2017/049 

u  Using an 1D convolutional NN 
on jet constituent particles: 

o  Comparing a version using  
particle kinematic variables to 
a full version exploiting b 
tagging related information 

o  Also comparing to a AK8 jet 
classification algorithm using a 
boosted decision tree, based 
only on jet observables 
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Boosted b Tagging Validation in Data 
24 

u  Commissioning and measurements of 
efficiencies based on similar techniques as 
for AK4 jets in muon-enriched QCD events 

o  Selecting AK8 jets with one (subjet b 
tagging ) or two (double-b tagger) subjets 
containing a soft muon 
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u  Misidentification probability also measured: 

o  Subjet b tagging: inclusive jet data 

o  Double-b tagger: boosted l+jets ttbar events 
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b Tagging at Trigger Level 25 

Stop: introductory slides for TBT meeting 
+ keep steering jobs 

u  Primary vertex (PV) and track 
reconstruction at trigger level are 
done via an iterative procedure: 

o  Estimate of the PV projecting the 
pixel hits along the jet direction  

o  Regional pixel tracking  

o  Pixel tracks used as seed for full track 
and PV reconstruction 

u  Tracks and PV are used as input for 
the CSVv2 algorithm 

o  The performance of the online b 
tagging is compared to offline 
performance in simulated ttbar 
events (PU=35, ΣpT

jet>250 GeV ) 

 

b jet efficiency
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ud
s 

je
t m

is
id

. p
ro

ba
bi

lit
y

3−10

2−10

1−10

1

CSVv2 at HLT

Offline CSVv2

13 TeV, 2016

CMS
Simulation

mean mµ 0.1) ± (0.2 
rms  mµ 0.1) ± (26.4 

m]µz [∆
150− 100− 50− 0 50 100 150

m
 

µ
Ev

en
ts

 / 
4 

0

2000

4000

6000

8000

10000

12000

14000

mean mµ 0.2) ± (3.0 
rms  mµ 0.1) ± (56.7 
mean mµ 0.2) ± (3.0 
rms  mµ 0.1) ± (56.7 

Pixel detector tracks
Full tracks

13 TeV, 2016

CMS
Simulation



1Tag 

High Luminosity Upgrades 26 

u  Major upgrades of the CMS detector planned to operate 
during the High Lumiosity (HL) LHC phase  

o  Trackers will be replaced with new detector with higher 
granularity, radiation robustness and extended coverage 

u  First studies show that the b-tagging algorithms can operate 
in the complex high PU environment expected during HL-LHC 

CMS DP-2016/065 
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Conclusions 

u  b-Tagging is a fundamental tools in most physics analyses 

u  CMS reached a significant improvement on their algorithms 
in RunII, and new promising ideas for further developments 
are being explored 

u  Not only algorithms, but also the measurements of their 
performance on data had benefited from new ideas (and 
of increased sample statistics) in 2016 

u  Techniques are being extended to cover more specific 
topologies becoming ever more important with the increase 
of the LHC collisions center-of-mass energy 

u  More challenge ahead: already working to maintain b-
tagging a successful tool in the next decade of data taking 
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Track Selection   29 

Stop: introductory slides for TBT meeting 
+ keep steering jobs 
Stop: introductory slides for TBT meeting 
+ keep steering jobs 

u  The tracks used in the algorithms of b-jet identification must 
satisfy the following quality criteria: 

o  Transverse momentum pT>1 GeV 

o  Normalized  χ2<5 

o  At least one hit in the pixel layers of the tracker 

§  This requirement has been significantly loosened with respect to 
Run1 to cope with the reduced hit efficiency at high luminosity 

o  Transverse impact parameter IPxy<0.2 cm 

o  Longitudinal impact parameter IPz<17 cm 

o  Distance between track and jet axis at their point of closest 
approach D<0.07 cm 

o  Decay length L<5 cm  
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  Secondary Vertices (SV) 30 

Stop: introductory slides for TBT meeting 
+ keep steering jobs 
Stop: introductory slides for TBT meeting 
+ keep steering jobs 

u  Adaptive vertex reconstruction (AVR) algorithm: 
o  It is the algorithm used for b-tagging during LHC Run1 

o  Track associated to the jet are fitted through the adaptive 
vertex fitter 

o  Several selection criteria applied to remove secondary 
vertices less likely to originate from a B hadron decay 

u  Inclusive vertex finder (IVF): 
o  Using inclusively the tracks in the event, without prior 

associations with the jets 

o  Cluster of tracks are identified and fitted around displaced 
“seed” tracks with IP>50 μm and IP significance > 1.2 

o  Tracks in common with the event primary vertex are 
arbitrated, and the secondary vertex is refitted if at least 
two tracks remain 
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  Soft Lepton Taggers 31 

Stop: introductory slides for TBT meeting 
+ keep steering jobs 
Stop: introductory slides for TBT meeting 
+ keep steering jobs 

u  Soft lepton variables are used to build a soft lepton tagger 

u  A Boosted Decision Tree (BDT) is used to combine: 

o  2D and 3D impact parameter significance of the lepton 

o  ΔR(jet,lep), pT
lep/pT

jet, lepton pT
rel 

o  For soft electron: MVA-based electron identification    
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DeepJet 32 

u  Probability for gluon jets to be misidentified as a light quark 
(uds) jet, as a function of the efficiency to correctly identify 
light quark jets  

 
CMS DP-2017/027 


