Measurement of jet substructure in $t\bar{t}$ events at 13 TeV

Markus Seidel

CERN

April 11, 2018

How experimentalists can contribute to generator development

- Measure distributions that are sensitive to generator choices and parameters
- General problem: distributions at detector level can only be reproduced with running the whole detector simulation, and usually only by original authors
- Unfold to particle level so that theorists can easily compare with their latest models
 - Several tools on the market. Recommendation: TUnfold
- Implement in RIVET framework (>400 analyses from LEP, LHC and others)

Define observables at particle level

Particle level

- No access to quarks and gluons, only hadrons, leptons and photons
- Not matching with current higher-order + resummation calculations for colored particles
- Exact match between different generators! Can be compared to future MC
- Usually close to detector level, using same algorithms for reconstructing resonances
- "report only what you can see" \rightarrow small extrapolation uncertainties
- Use for solid comparison of data with MC generators

LHE level: Serious problems occur at NLO: Unphysical for MCatNLO method

Don't ever use LHE kinematics!

Parton level: Access to quarks and gluons without hadronization corrections

- Approximate match with higher-order + resummation calculations, but not exact
- "The unfortunate truth is that most of the event record is intended for generator debugging rather than physics interpretation." - Rivet manual

Markus Seidel (CERN)

B jets at particle level

- Include B hadrons in jet clustering
 - Last hadron before the weak decay
- \blacksquare Four-momentum scaled by $10^{-20} \rightarrow ``ghost''$
- Multi-tag is possible, e.g. $b\bar{b}$
- Similar for charm hadrons and tau mesons
- No parton level information
 - No distinction t
 ightarrow bW vs. $g
 ightarrow bar{b}$
 - No distinction light quark vs. gluon

Jet substructure in $t\bar{t}$ events

Motivation

- Fragmentation of quarks and gluons to jets described by parton shower + hadronization model
- lacksquare Current models are tuned to LEP $Z
 ightarrow qar{q}$ data
- Uncertainties relevant for many measurements, e.g. top mass
- Measurement in $t\bar{t} \rightarrow lepton+jets$
 - "Standard candle" in pp collisions
 - Jet substructure for each flavor: bottom, light-enriched, gluon-enriched
 - Exhaustive analysis: more than 20 observables
 - Include recent propositions, useful for flavor discrimination + boosted heavy objects
 - Improve/tune tools for FSR shower and hadronization
 - ATLAS already measured jet shapes in tt arXiv 1307.5749

Phase space definition

 $t\bar{t} \rightarrow$ lepton+jets selection (follows closely reconstruction level selection)

- **1** Exactly 1 electron or muon with $p_T > 26 \text{ GeV}$, $|\eta| < 2.4$, veto event in presence of additional lepton with $p_T > 15 \text{ GeV}$, $|\eta| < 2.4$
- 2 Require \geq 4 jets with anti- k_T , R=0.4, p_T > 30 GeV, $|\eta|$ < 2.5
- **3** Require exactly 2 b-tagged jets
- 4 Require \geq 2 untagged jets to form W candidate with $|m_{jj} 80.4 \,\text{GeV}| < 15 \,\text{GeV}$

Jet flavor samples

- inclusive jets
- bottom jets: "ghost" B hadron clustered in jet (99% from b quarks)
- light-quark enriched jets: from W candidate (50% light quarks, 21% charm, 29% gluons)
- gluon-enriched jets: not from W candidate (1% bottom, 11% charm, 31% light, 58% gluon)

Overview of observables

- Generalized angularities λ_{β}^{κ} , eccentricity, soft drop observables, N-subjettiness, energy correlation function ratios
- Measured using charged, charged+neutral particles for different flavors \rightarrow 264 distributions
- Large correlations \rightarrow find set of 4 low-correlation observables

100

-20

-40

-60

_100

%

Uncertainties

- \blacksquare Unfolding without regularization, verified with toy-experiments \rightarrow no bias, correct σ_{stat}
- Systematic uncertainties on data/MC corrections + MC variations + bkg fractions, taken into account by unfolding data with alternative migration matrices
- Uncertainty on tracking efficiency (3–6%) can become dominant, depending on observable

Generalized angularities: width

Defined in arXiv 1402.2657 as

$$\lambda_{\beta}^{\kappa} = \sum_{i} z_{i}^{\kappa} \left(\frac{\Delta R(i, \hat{n}_{r})}{R} \right)^{\beta}$$

with $z_i = p_{\rm T}^i / \sum_i p_{\rm T}^i$ and recoil-free axis \hat{n}_r

- \star Dire (NLO) 2.001: full $b \rightarrow bg$ structure not covered yet
- • Pythia 8 requires FSR down

•
$$\varepsilon = 1 - \frac{v_{\min}}{v_{\max}}$$
 with the eigenvalues of

$$M = \sum_{i} E_{i} \times \begin{pmatrix} (\Delta \eta_{i,\hat{n}_{r}})^{2} & \Delta \eta_{i,\hat{n}_{r}} \Delta \phi_{i,\hat{n}_{r}} \\ \Delta \phi_{i,\hat{n}_{r}} \Delta \eta_{i,\hat{n}_{r}} & (\Delta \phi_{i,\hat{n}_{r}})^{2} \end{pmatrix}$$

- Perfectly circular jet: ε = 0
 Elliptical jet: ε → 1
- Best agreement with \Box Herwig 7

N-subjettiness ratios arXiv 1108.2701

•
$$\tau_{NM} = \tau_N / \tau_M$$
, where $\tau_N^{(\beta)} = \frac{1}{d_0} \sum_i p_{\mathsf{T},i} \min\left\{ \left(\Delta R_{1,i} \right)^{\beta}, \left(\Delta R_{2,i} \right)^{\beta}, \dots, \left(\Delta R_{N,i} \right)^{\beta} \right\}, \beta = 1$

• + minimization step for finding subjet axes that minimize τ_N

• Used for distinguishing jets with N or M subjets, e.g. τ_{21} in W tagging

Data not well described by MC generators (correlated with charged multiplicity)

Markus Seidel (CERN)

Soft drop observables arXiv 1704.05066

- Iterative soft drop declustering $j_0 \rightarrow j_1 + j_2, j_1 \rightarrow j_0$, stop when $z_g = p_T(j_2) / p_T(j_0) > 0.1$
- Groomed momentum fraction z_g of last iteration
 - Related to QCD splitting function, independent of $\alpha_s^{FSR}(m_Z)$
 - Best agreement with □ Herwig 7 (angular-ordered)
- ΔR_g = angle between subjets, related to jet width and groomed area

Flavor dependence

• Left: MCs do not describe charged multiplicity (λ_0^0) , bottom jets seem worse

Right: Les Houches Angularity described equally well for all flavors

Markus Seidel (CERN)

Measurement of jet substructure in $t\bar{t}$ events at 13 TeV

$\chi^2~{\rm tests}$

able 1: χ^2 values for the data-MC comparison of the distributions of the four lightly-correlated											
et substructure observables, λ_1^1 , ε , z_g , and τ_{43} .											
Observable	flavor	POWHEG +PYTHIA 8	POWHEG +	SHERPA 2	DIRE						

Observable	flavor	POWHEG +PYTHIA 8			POWHEG +	SHERPA 2	DIRE
		FSR-down	nominal	FSR-up	HERWIG 7		NLO
$\alpha_s^{FSR}(m_Z)$		0.1224	0.1365	0.1543	0.1262	0.118	0.1201
λ_1^1 (width)	incl	2.2	148.6	1153.9	62.5	48.1	673.3
ndf = 8	bottom	2.9	225.6	1754.6	18.8	92.1	2841.6
	light	7.0	59.2	518.5	44.2	20.4	46.8
	gluon	2.9	17.6	95.7	15.4	8.1	175.3
ε	incl	75.3	127.0	268.2	6.4	28.9	75.7
ndf = 6	bottom	29.0	50.6	110.0	1.9	20.5	38.6
	light	17.6	28.7	60.1	4.1	5.8	39.1
	gluon	100.9	139.0	224.2	16.2	44.2	375.0
z_g	incl	23.1	23.4	24.3	3.1	18.9	18.9
ndf = 4	bottom	6.7	9.0	12.1	1.0	6.1	6.5
	light	22.9	20.0	18.3	2.6	16.3	28.4
	gluon	12.2	11.4	9.5	2.4	13.3	37.5
τ_{43}	incl	25.4	52.3	128.3	23.7	37.6	17.3
ndf = 5	bottom	22.9	50.1	133.5	16.9	40.5	4.2
	light	8.8	20.2	57.9	35.9	32.8	97.5
	gluon	4.9	8.6	16.2	5.4	6.5	39.2

Main setup comparison

- Pythia FSR down is preferred over default
- Herwig 7 agrees very well for ε and z_g

Other Pythia settings

- b jets: prefer harder b fragmentation
- light quarks / gluons: prefer QCD-based color reconnection

Scan of Powheg+Pythia 8 $\alpha_s^{FSR}(m_Z)$

- Need more complete tuning to get agreement with all observables
- From jet width only $\rightarrow \alpha_s^{\text{FSR}}(m_Z) = 0.1227 \pm 0.0013 \approx \text{FSR}$ down
- Comparison to world average would require conversion to CMW scheme and scale uncertainties ($\rightsquigarrow +0.014 \\ -0.012$)

Summary

Measured various jet substructure observables probing the jet evolution

- Angularities, N-subjettiness, soft drop, energy correlations...
- All observables available with charged and charged+neutral particles, for inclusive, bottom, light-enriched and gluon-enriched jet samples
- Too many to show in paper full results will be available in HepData and Rivet
- Comparisons with recent generators: Powheg+Pythia 8/Herwig 7, Sherpa, Dire NLO
 - \blacksquare No generator can describe all observables \rightarrow tuning needed
 - Improvement of Dire NLO shower expected: cover full structure of $b \rightarrow bg$ branchings in next version. Promises reduced uncertainties wrt other parton showers
- Demonstrated simple tuning of Powheg+Pythia 8 $\rightarrow \alpha_s^{\text{FSR}}(m_Z) = 0.1227 \pm 0.0013$ \rightarrow validation of FSR scale uncertainty range (factor of 2 for shower μ_R)
- Constraints on color reconnection and hadronization models possible