Performance of b-jet identification in ATLAS.

CMS Heavy flavour tagging workshop

Matthias Saimpert

DESY (Hamburg)

11 April 2018

Disclaimer on the choice of topics

All ATLAS public results regarding Flavour Tagging are available here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FlavourTaggingPublicResultsCollisionData

Disclaimer on the choice of topics

All ATLAS public results regarding Flavour Tagging are available here: https://twiki.cem.ch/twiki/bin/view/AtlasPublic/FlavourTaggingPublicResultsCollisionData

I plan to discuss ...

- a significant part of the b-tagging chain in ATLAS:
 - \rightarrow flavour labeling, track association, identification algorithms, calibration.
- emphasizing the latest developments in the group with public reference

Disclaimer on the choice of topics

All ATLAS public results regarding Flavour Tagging are available here: https://twiki.cem.ch/twiki/bin/view/AtlasPublic/FlavourTaggingPublicResultsCollisionData

I plan to discuss ...

- a significant part of the b-tagging chain in ATLAS:
 - \rightarrow flavour labeling, track association, identification algorithms, calibration.
- emphasizing the latest developments in the group with public reference

will not cover* ...

- upgrade studies
- online b-tagging performance
- c-tagging \rightarrow see Andy C's talk on " $H \rightarrow cc$ in ATLAS" this morning
- more generally, new developements with not yet public reference

*sorry in advance if your favorite topic is missing, I will do my best to answer questions

Why b-jet identification so important at the LHC?

- Identifying jets corresponding to a *b*-quark (*b*-tagging) is essential to many LHC data analysis
- It is possible thanks to the high mass and long lifetime of *b*-hadrons

Why b-jet identification so important at the LHC?

- Identifying jets corresponding to a *b*-quark (*b*-tagging) is essential to many LHC data analysis
- It is possible thanks to the high mass and long lifetime of *b*-hadrons

Top Physics / New Phenomena

- \rightarrow top precision measurements
- \rightarrow many searches, such as searches for stop pair production (SUSY)

Why b-jet identification so important at the LHC?

- Identifying jets corresponding to a *b*-quark (*b*-tagging) is essential to many LHC data analysis
- It is possible thanks to the high mass and long lifetime of *b*-hadrons

Top Physics / New Phenomena

- ightarrow top precision measurements
- \rightarrow many searches, such as searches for stop pair production (SUSY)

Higgs Physics

- \rightarrow observation of $b\bar{b}$ decay mode
- \rightarrow direct measurement of the top-Higgs coupling (ttH production)

1) Flavour labeling

- How do we define a *b*-jet, a *c*-jet and a "light-flavour"-jet in our simulated samples?

- Initial interacting partons determined from the Parton Density functions (PDFs)
- Perturbative QCD (matrix elements ME, parton shower PS), very small timescales \rightarrow coloured final state objects
- Partons can be grouped together via a clustering algorithm
 → definition of "parton-level" jets

- Initial interacting partons determined from the Parton Density functions (PDFs)
- Perturbative QCD (matrix elements ME, parton shower PS), very small timescales \rightarrow coloured final state objects
- Partons can be grouped together via a clustering algorithm
 → definition of "parton-level" jets
- Parton → Hadrons (hadronization), other non-perturbative effects (underlying event)
 → definition of "particle-level" jets

- Initial interacting partons determined from the Parton Density functions (PDFs)
- Perturbative QCD (matrix elements ME, parton shower PS), very small timescales \rightarrow coloured final state objects
- Partons can be grouped together via a clustering algorithm
 → definition of "parton-level" jets
- Parton → Hadrons (hadronization), other non-perturbative effects (underlying event)
 → definition of "particle-level" jets
- Experimentally, clustering based on calorimeter energy deposits or inner detector tracks

1 fixed-order QCD computation: no jets, only limited number of partons

- 1 fixed-order QCD computation: no jets, only limited number of partons
- 2 + parton shower, one common choice: jet (with $p_T > X$ GeV) including ≥ 1 *b*-quark with $p_T > X'$ GeV

- 1 fixed-order QCD computation: no jets, only limited number of partons
- 2 + parton shower, one common choice: jet (with $p_T > X$ GeV) including ≥ 1 *b*-quark with $p_T > X'$ GeV
- 3 + hadronisation, non-pert. QCD, one common choice: jet (with $p_T > X$ GeV) including at least one *b*-hadron with $p_T > X'$ GeV

- 1 fixed-order QCD computation: no jets, only limited number of partons
- 2 + parton shower, one common choice: jet (with $p_T > X$ GeV) including ≥ 1 *b*-quark with $p_T > X'$ GeV
- 3 + hadronisation, non-pert. QCD, one common choice: jet (with p_T > X GeV) including at least one b-hadron with p_T > X' GeV
 - definition of "including" is analysis dependent, for flavour-tagging performance studies in ATLAS during Run 2 we use:

 $\Delta R(ext{b-hadron, jet}) = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ (priority to closest jet)

- 1 fixed-order QCD computation: no jets, only limited number of partons
- 2 + parton shower, one common choice: jet (with $p_T > X$ GeV) including ≥ 1 *b*-quark with $p_T > X'$ GeV
- 3 + hadronisation, non-pert. QCD, one common choice: jet (with p_T > X GeV) including at least one b-hadron with p_T > X' GeV
 - definition of "including" is analysis dependent, for flavour-tagging performance studies in ATLAS during Run 2 we use:

 ΔR (b-hadron, jet) = $\sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ (priority to closest jet)

Wrapping up, in ATLAS simulation:

<code>b-jets</code> are jets including at least one <code>b-hadron</code> with $p_{\mathrm{T}} > 5$ GeV

c-jets do not include b-hadrons but include at least one c-hadron with $p_{\rm T}>5~\text{GeV}$

au-jets do not include b/c-hadrons but include at least one au-lepton with p_T > 5 GeV

LF-jets ("light-flavour") are all the others

A. Buckley, C. Pollard, arXiv:1507.00508 [hep-ph]

– hadron-based labeling not possible \rightarrow parton-based labeling

- A. Buckley, C. Pollard, arXiv:1507.00508 [hep-ph]
 - hadron-based labeling not possible \rightarrow parton-based labeling
 - common choice in literature: look at highest $p_{\rm T}$ parton associated with the jet

A. Buckley, C. Pollard, arXiv:1507.00508 [hep-ph]

- hadron-based labeling not possible \rightarrow parton-based labeling
- common choice in literature: look at highest $p_{\rm T}$ parton associated with the jet
- common limitations: unphysical partons in truth record, generator dependent, inconsistent w.r.t perturbative order (partons from ME or PS)...

		Jets	γ-	$\gamma + jet$	
Scheme	Generator	9/8	γ/g	9/8	
Max-p _T	Pythia 8	0.39	15.4	9.5	
MPI off	Herwig++	0.33	18.3	11.4	
	Sherpa	0.57	13.4	7.0	

A. Buckley, C. Pollard, arXiv:1507.00508 [hep-ph]

- hadron-based labeling not possible \rightarrow parton-based labeling
- common choice in literature: look at highest $p_{\rm T}$ parton associated with the jet
- common limitations: unphysical partons in truth record, generator dependent, inconsistent w.r.t perturbative order (partons from ME or PS)...

		Jets	γ-	$\gamma + jet$	
Scheme	Generator	9/8	γ/g	q/g	
Max-p _T	Pythia 8	0.39	15.4	9.5	
MPI off	Herwig++	0.33	18.3	11.4	
	Sherpa	0.57	13.4	7.0	

- QCD-aware parton labeling: $k_{\rm T}$ algorithm on partons + prompt lepton/ γ vetoing proto-jet merging not compatible with a QCD/QED vertex
 - \rightarrow $k_{\rm T}$ $\sim\,$ "inversion of the QCD emission sequence"
 - \rightarrow LO generators in good agreement

k_T	Pythia 8	0.65	11.8	7.6
MPI off	Herwig++	0.68	11.2	8.0
	Sherpa	0.73	13.0	7.0

A. Buckley, C. Pollard, arXiv:1507.00508 [hep-ph]

- hadron-based labeling not possible \rightarrow parton-based labeling
- common choice in literature: look at highest $\ensuremath{p_{\mathrm{T}}}$ parton associated with the jet
- common limitations: unphysical partons in truth record, generator dependent, inconsistent w.r.t perturbative order (partons from ME or PS)...

		Jets	$\gamma + jet$	
Scheme	Generator	9/8	γ/g	9/8
Max-p _T	Pythia 8	0.39	15.4	9.5
MPI off	Herwig++	0.33	18.3	11.4
	Sherpa	0.57	13.4	7.0

- QCD-aware parton labeling: $k_{\rm T}$ algorithm on partons + prompt lepton/ γ vetoing proto-jet merging not compatible with a QCD/QED vertex
 - \rightarrow $k_{\rm T}$ $\sim\,$ "inversion of the QCD emission sequence"
 - \rightarrow computation at various perturbative order (Sherpa) in good agreement

ME	$N_{j3}/N_{j3}^{2\to 2}$	Gluon frac.	Light quark frac.	Light parton frac.	Unlabelled frac.
$2 \rightarrow 2$	1.00	62.7%	27.0%	89.6%	2.3%
2 ightarrow 3	1.59	56.4%	31.4%	88.3%	2.9%
$2 \to 4$	1.79	58.3%	31.9%	90.2%	2.6%

2) Jet-to-track association

- Which jet gets which tracks?

Candidate $H \rightarrow bb$ decay event with two b-jets and two muons recorded in 2016

Muon spectrometer

- B = 0.5 T (mean)
- muon detection
- not included in the ATLAS most used b-tagging algo.

Electromagnetic calorimeter (EM)

- destructive detection of e/γ
- groups of cells with significant energy deposit
- E and angular Measurement

Solenoid Magnet

Toroid Magnets

Hadronic calorimeter

- destructive detection of hadrons
- groups of cells with significant energy deposit
- E and angular measurement

Inner detector

- B = 2 T
- Non-destructive detection of charged particles
- trajectories, p_T
- primary (PV) and secondary vertices (SV) reconstruction
- track impact parameters
- track momentum (angular) resolution decreases (increases) with p_T

SCT Tracker Pi

Track association algorithms

See ATL-PHYS-PUB-2017-010 for more details

- R = 0.4 anti- $k_{\rm t}$ calorimeter jets are the most common jets in ATLAS

ightarrow shrinking cone algorithm used to determine the tracks used for b-tagging

Track association algorithms

See ATL-PHYS-PUB-2017-010 for more details

– R=0.4 anti- $k_{
m t}$ calorimeter jets are the most common jets in ATLAS

 \rightarrow shrinking cone algorithm used to determine the tracks used for b-tagging

- Many recent activities studying anti- $k_{\rm t}$ jets based on tracks (track jets)

- \rightarrow primary use case: b-tagging in dense environment (Top, Higgs, $X \rightarrow bb$)
- \rightarrow studies include e.g. R = 0.2 and variable-R (shrinking cone) track jets

Subjet reconstruction with tracks

- Reconstruction of 1 large-*R* jet, adequate constituent (subjet) reconstruction required to determine substructure accurately
- Tracks have better angular resolution than calorimeter clusters \rightarrow use of track jets ghost-associated with the large-R jet

Subjet reconstruction with tracks

- Reconstruction of 1 large-*R* jet, adequate constituent (subjet) reconstruction required to determine substructure accurately
- Tracks have better angular resolution than calorimeter clusters \rightarrow use of track jets ghost-associated with the large-R jet

Double Subjet B-Labelling Efficiency AS Simulation 76 GeV < m_{int} < 146 GeV Preliminary 0.8 0.6 = 0.02 Track Jet 0.4 0.2 500 1000 1500 2000 2500 3000 Higgs Jet p₇ [GeV]

Subjet reconstruction with tracks

- Reconstruction of 1 large-R jet, adequate constituent (subjet) reconstruction required to determine substructure accurately
- Tracks have better angular resolution than calorimeter clusters \rightarrow use of track jets ghost-associated with the large-R jet

Probability to find 2 subjets truth-labeled as b

R=0.2 track jets vs Variable-R ($\sim \rho/p_{\rm T}$)

- currently assessing b-tagging performance in data of such subjets
- other ideas also explored

3) b-jet identification algorithm

- Properties of b-hadrons:

1 lifetime: V_{cb} small, decay length \sim 450 μ m

- 2 large mass: few GeV
- 3 high jet momentum fraction: $\sim 80\%$ due to b-fragmentation function
- 4 high branching ratio to leptons: $\sim 20\%$

3) b-jet identification algorithm

Properties of b-hadrons:

- 1 lifetime: V_{cb} small, decay length \sim 450 μ m
- 2 large mass: few GeV
- 3 high jet momentum fraction: $\sim 80\%$ due to b-fragmentation function
- 4 high branching ratio to leptons: $\sim 20\%$

Experimental signatures of b-jets:

- presence of displaced tracks
- $\label{eq:presence of secondary vertices} \begin{array}{c} {}_{(B \ \rightarrow \ C \ \rightarrow \ light)} \end{array}$
- peculiar topology (more and higher energy tracks)

presence of electron and muon-in-jets (not used in nominal algorithms)

topology of *b*- and LF-jets

"Low-level" b-tagging algorithms in ATLAS

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP/Tevatron$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"

"Low-level" b-tagging algorithms in ATLAS

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP/Tevatron$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"
- sign defined w.r.t location of crossing point btw track and jet axis

"Low-level" b-tagging algorithms in ATLAS

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP/Tevatron$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"
- sign defined w.r.t location of crossing point btw track and jet axis
- large positive tails for b and c-jets
 - ightarrow 14 track categories defined

 \rightarrow log-likelihoods built **per jet** from associated tracks and *b*-, *c* and LF-jet IP templates

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP/Tevatron$

- **d**₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"
- sign defined w.r.t location of crossing point btw track and jet axis
- large positive tails for b and c-jets
 - \rightarrow 14 track categories defined

 \rightarrow log-likelihoods built per jet from associated tracks and b-. c and LF-jet IP templates

 $IP2D \rightarrow 1D d_0$ templates (x,v) IP3D: \rightarrow 2D (d_0, z_0) templates

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 13/26

IP2D/IP3D discriminants

see ATL-PHYS-PUB-2016-012 and ATL-PHYS-PUB-2017-013 for more details

- $\log(P_c/P_u)$ and $\log(P_b/P_c)$ also defined, total of 6 discriminants

Advantage: very inclusive, simple. Drawback: high sensitivity to jet axis and material interactions

New IP algorithm in ATLAS: RNNIP

see ATL-PHYS-PUB-2017-003 and ATL-PHYS-PUB-2017-013 for more details

- Track impact parameters are correlated if they originate from a common decay (b-, c-hadrons), IP2D/IP3D likelihoods assume no correlation
- New IP algorithm in ATLAS learning about the correlations between tracks in *b*-, *c* and LF-jets \rightarrow RNNIP (based on a recurrent neural network)

New IP algorithm in ATLAS: RNNIP

see ATL-PHYS-PUB-2017-003 and ATL-PHYS-PUB-2017-013 for more details

- Track impact parameters are correlated if they originate from a common decay (b-, c-hadrons), IP2D/IP3D likelihoods assume no correlation
- New IP algorithm in ATLAS learning about the correlations between tracks in *b*-, *c* and LF-jets \rightarrow RNNIP (based on a recurrent neural network)

- RNNIP outperforms IP3D if including only track category, d_0 and z_0 significance

Performance increase if jet $p_{\rm T}$ fraction carried by track and ΔR (track, jet) added

New IP algorithm in ATLAS: RNNIP

see ATL-PHYS-PUB-2017-003 and ATL-PHYS-PUB-2017-013 for more details

- Track impact parameters are correlated if they originate from a common decay (b-, c-hadrons), IP2D/IP3D likelihoods assume no correlation
- New IP algorithm in ATLAS learning about the correlations between tracks in *b*-, *c* and LF-jets \rightarrow RNNIP (based on a recurrent neural network)

- RNNIP outperforms IP3D if including only track category, d₀ and z₀ significance

Performance increase if jet p_T fraction carried by track and ΔR (track, jet) added \rightarrow studies assessing RNNIP performance in data in progress

- All track pairs within a jet are tested for a 2-track vertex hypothesis
- final fit includes all tracks from 2-trk vtx \rightarrow 1 (or 0) "inclusive" vertex per jet

- All track pairs within a jet are tested for a 2-track vertex hypothesis
- final fit includes all tracks from 2-trk vtx \rightarrow 1 (or 0) "inclusive" vertex per jet
- Long lifetime of b/c-hadrons \rightarrow more SV in b- and c-jets

- All track pairs within a jet are tested for a 2-track vertex hypothesis
- final fit includes all tracks from 2-trk vtx \rightarrow 1 (or 0) "inclusive" vertex per jet
- Long lifetime of b/c-hadrons \rightarrow more SV in b- and c-jets
- Very good discrimination at low p_T but degradation at high p_T (track reconstruction efficiency decrease, more 2-trk vtx fakes)

- All track pairs within a jet are tested for a 2-track vertex hypothesis
- final fit includes all tracks from 2-trk vtx \rightarrow 1 (or 0) "inclusive" vertex per jet
- Long lifetime of b/c-hadrons \rightarrow more SV in b- and c-jets
- Very good discrimination at low p_T but degradation at high $p_{\rm T}$ (track reconstruction efficiency decrease, more 2-trk vtx fakes)
- 8 quantities reconstructed by SV1 are used as discriminant

Inclusive secondary vertex (SV) reconstruction: SV1

- All track pairs within a jet are tested for a 2-track vertex hypothesis
- final fit includes all tracks from 2-trk vtx \rightarrow 1 (or 0) "inclusive" vertex per jet
- Long lifetime of b/c-hadrons \rightarrow more SV in b- and c-jets
- Very good discrimination at low p_T but degradation at high $p_{\rm T}$ (track reconstruction efficiency decrease, more 2-trk vtx fakes)
- 8 quantities reconstructed by SV1 are used as discriminant

Interesting feature: mis-alignement of the jet and PV-SV axis at high p_{T} for HF-jets

Decay chain multi-vertex reconstruction: JetFitter

- J. Phys. Conf. Ser. 119 (2008) 03203
- exploits the topological structure of weak band c-hadron decays to reconstruct the full b-hadron decay chain
- b-hadron flight axis reconstructed using a Kalman filter

8 quantities reconstructed by JetFitter are used as discriminant

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 17/26

 $p_T^{jet} + \eta^{jet} + 3 (IP2D/IP3D) + 8 (SV1) + 8 (JF)$ variables used as input to a boosted decision tree: **MV2 (multi-variate discriminant)**

- Algorithm learns how to identify *b*-jets, trained on hybrid simulated MC sample
- Provide a weight within [-1,1] telling you how likely the jet to be a b-jets

 $p_{TT}^{\text{jet}} + \eta^{\text{jet}} + 3 \text{ (IP2D/IP3D)} + 8 \text{ (SV1)} + 8 \text{ (JF)}$ variables used as input to a boosted decision tree: MV2 (multi-variate discriminant)

- Algorithm learns how to identify *b*-jets, trained on hybrid simulated MC sample
- Provide a weight within [-1,1] telling you how likely the jet to be a b-jets
- Performance quantified in ROC curve: signal efficiency vs background rejection

- MV2, main tagger used in run 2
- MV2Mu includes soft muon tagger output (see backup)
- MV2MuRNN: muons + RNNIP

New "high-level" tagger: DL1

- New high-level tagger based on a deep recurrent neural network: DL1
- fed with \sim the same information than MV2, achieve similar performance
- but higher technology: combined RNNIP/DL1 training, tunable *c*-jet fraction in the background sample without retraining, etc, possible

New "hybrid" training sample

- b-hadron p_T spectrum in $t\bar{t}$ intrinsically limited by $m_t \sim 175$ GeV
- for $p_{T}^{\text{jet}} > m_t$, jet clusters nearby hadronic activity, uncorrelated to the b-hadron (e.g. final state radiation) $\rightarrow t\bar{t}$ -based training may not be optimal
- Use of an hybrid sample: $t\bar{t}$ (b-hadron $p_T < 250$ GeV) and Z' (> 250 GeV)

tt simulated sample

Z' simulated sample

New "hybrid" training sample

- b-hadron p_T spectrum in $t\bar{t}$ intrinsically limited by $m_t \sim 175 \text{ GeV}$
- for $p_{T}^{\text{jet}} > m_t$, jet clusters nearby hadronic activity, uncorrelated to the b-hadron (e.g. final state radiation) $\rightarrow t\bar{t}$ -based training may not be optimal
- Use of an hybrid sample: $t\bar{t}$ (*b*-hadron $p_T < 250$ GeV) and Z' (> 250 GeV)

performance on Z' sample improved

b-jet definition in collision data analysis

- Tagger working points (WP) defined as a certain cut on the BDT output

 \rightarrow select a certain point on the ROC curves

- "fixed-cut working points" \rightarrow constant cut value on the BDT output
- WP name gives b-efficiency observed in a $t\bar{t}$ simulated sample, ex: 85% WP

b-jet definition in collision data analysis

- Alternative b-jets definitions are available to physics analysers
 - ${\mbox{ \ \ }}$ "hybrid WP": fixed-cut at low jet $p_{\rm T},$ flat-efficiency cut at high jet $p_{\rm T}$
 - "pseudo-continuous calibration": 5 bins b-tagger output with correlations

b-jet definition in collision data analysis

- Alternative b-jets definitions are available to physics analysers
 - ${\mbox{ \ \ }}$ "hybrid WP": fixed-cut at low jet $p_{\rm T},$ flat-efficiency cut at high jet $p_{\rm T}$
 - "pseudo-continuous calibration": 5 bins b-tagger output with correlations

- Strong reasons to believe performance in simulation and data differ

- for signal (i.e. true b-jets): theory modeling effects. Uncertainty in b-fragmentation function, underlying event, ..., also pileup, tracking in dense environment at high p_T, etc.
- for background (i.e. non-b jets): detector effects. Non-perfect tracker geometry, dead pixels, fake tracks from random hits, material interactions, ..., also pileup, etc.

4) b-tagging performance in data

also known as "calibration"

- sample of true *b*-jets before any tagging needed

- sample of true *b*-jets before any tagging needed
- use of $t\bar{t}$ fully leptonic decays, i.e. $t \rightarrow bW(\rightarrow l\nu)$
- use of opposite sign $e\mu$ + jets channel, $Z(\rightarrow II)$ + jets background reduced
- exactly 2 jets required to limit combinatorics to bb, bl, lb, ll

- sample of true *b*-jets before any tagging needed
- use of $t\bar{t}$ fully leptonic decays, i.e. $t \rightarrow bW(\rightarrow l\nu)$
- use of opposite sign $e\mu$ + jets channel, $Z(\rightarrow II)$ + jets background reduced
- exactly 2 jets required to limit combinatorics to bb, bl, lb, ll
- flavour fractions and light mistag rate taken from simulation, binned MV2 output for b-jets fitted from data (likelihood)
- data and MC compatible, uncertainty: few %, dominated by tt modeling

- sample of true *b*-jets before any tagging needed
- use of $t\bar{t}$ fully leptonic decays, i.e. $t \rightarrow bW(\rightarrow l\nu)$
- use of opposite sign $e\mu$ + jets channel, $Z(\rightarrow II)$ + jets background reduced
- exactly 2 jets required to limit combinatorics to bb, bl, lb, ll
- flavour fractions and light mistag rate taken from simulation, binned MV2 output for b-jets fitted from data (likelihood)
- data and MC compatible, uncertainty: few %, dominated by tt modeling

T&P *tt* di- and semi-leptonic and muon-in-jet analysis also performed

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 23/26

 sample of true *c*-jet **before and after** any tagging needed

- sample of true c-jet before and after any tagging needed
- use of $t\bar{t}$ semi-leptonic decays, i.e. one W $\rightarrow l\nu$ and one W $\rightarrow cs$
- 1 lepton + 4 jets (including 2 *b*-tagged jets), kinematic fit to reduce background
- fit of the 2 jets attributed to the W decay

- sample of true *c*-jet **before and after** any tagging needed
- use of tt semi-leptonic decays, i.e. one $W \rightarrow l\nu$ and one $W \rightarrow cs$
- 1 lepton + 4 jets (including 2 *b*-tagged jets), kinematic fit to reduce background
- fit of the 2 jets attributed to the W decay
- flavour fractions from simulation, use of calibration for b- and LF-jets, binned MV2 output for c-jets fitted from data (likelihood)
- c-rejection in data lower than in MC uncertainty 5-20 %, dominated by $t\bar{t}$ modeling

- sample of true c-jet before and after any tagging needed
- use of $t\bar{t}$ semi-leptonic decays, i.e. one W $\rightarrow l\nu$ and one W $\rightarrow cs$
- 1 lepton + 4 jets (including 2 *b*-tagged jets), kinematic fit to reduce background
- fit of the 2 jets attributed to the W decay
- flavour fractions from simulation, use of calibration for *b*- and LF-jets, binned MV2 output for c-jets fitted from data (likelihood)
- c-rejection in data lower than in MC uncertainty 5-20 %, dominated by tt modeling

cut & count analysis based on W + c events also performed

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 24/26

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: $\sim 2\%~(5\%)$ b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes from track resolution effects

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes from track resolution effects
- tag jets with negative attributes \rightarrow similar mistag rate for light (resolution function symmetric)
 - \rightarrow much lower rate for b and c
 - ightarrow obtention of a purer sample after tag

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes from track resolution effects
- tag jets with negative attributes
 → similar mistag rate for light (resolution function symmetric)
 → much lower rate for h and c

 - \rightarrow obtention of a purer sample after tag
- LF-rejection in data lower than in MC, high uncertainties (~ 10-40%) related to limited flipped tagger performance

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes from track resolution effects
- tag jets with negative attributes
 → similar mistag rate for light (resolution function symmetric)
 → much lower rate for h and c
 - ightarrow much lower rate for b and c
 - \rightarrow obtention of a purer sample after tag
- LF-rejection in data lower than in MC, high uncertainties (~ 10-40%) related to limited flipped tagger performance

new bottom-up approach "adjusted-MC method" also performed

Conclusion

- b-tagging is an essential tool for many key measurements at the LHC
- an overview of the latest algorithm developments and performance measurements performed by the ATLAS collaboration was presented

Conclusion

- b-tagging is an essential tool for many key measurements at the LHC
- an overview of the latest algorithm developments and performance measurements performed by the ATLAS collaboration was presented
- machine learning based algorithms improve significantly the performance
 - $^{\tt m}$ strong dependence of the tracking and vertexing performance versus $p_{\rm T},$ high background \rightarrow not 1 golden discrimination variable
 - many measurements available from tracking

Conclusion

- b-tagging is an essential tool for many key measurements at the LHC
- an overview of the latest algorithm developments and performance measurements performed by the ATLAS collaboration was presented
- machine learning based algorithms improve significantly the performance
 - strong dependence of the tracking and vertexing performance versus $p_{\rm T},$ high background \rightarrow not 1 golden discrimination variable
 - many measurements available from tracking
- the calibration of these algorithms is a real challenge
 - complexity of the algorithms, limited "clean" data samples of *c* and LF-jets
 - nature of the fakes change with WP tightness (resolution → fake tracks)

Conclusion

- b-tagging is an essential tool for many key measurements at the LHC
- an overview of the latest algorithm developments and performance measurements performed by the ATLAS collaboration was presented
- machine learning based algorithms improve significantly the performance
 - $^{\tt s}$ strong dependence of the tracking and vertexing performance versus $p_{\rm T},$ high background \rightarrow not 1 golden discrimination variable
 - many measurements available from tracking
- the calibration of these algorithms is a real challenge
 - complexity of the algorithms, limited "clean" data samples of *c* and LF-jets
 - $\hfill \ensuremath{\,^\circ}$ nature of the fakes change with WP tightness (resolution \rightarrow fake tracks)
- many challenges, among them:
 - b-tagging beyond the $t\bar{t}$ kinematic reach: algorithm & calibration
 - calibration of the LF-jets mistagged not because of track resolution effects

Performance of b-jet identification in ATLAS.

Back-up slides

Matthias Saimpert

DESY (Hamburg)

11 April 2018

QCD-aware parton labeling vertices

$$d_{ij}^{(n)} = \min\left(k_{T_{ij}}^{2n}k_{T_{jj}}^{2n}\right)\Delta R_{ij}^{2}/R^{2} \quad D_{ij}^{(n)} = \begin{cases} d_{ij}^{(n)} & \text{if flavours QCD/QED compatible,} \\ \infty & \text{otherwise.} \end{cases}$$

 k_t : n = 1, C/A: n = 0, anti- k_t : n = -1

Figure 1: Feynman rule vertices used for QCD (and QED) aware jet clustering.

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 2/10

QCD-aware parton labeling with MPI on

MPI-quark particularly problematic since they can turn a gluon jet into a quark-jet High discrepancy of Herwig++ MPI simulation with respect to the other generators

		Jets	$\gamma + jet$	
Scheme	Generator	q/g	γ/g	q/g
$Max-p_T$	Pythia 8	0.38	17.2	10.5
	Herwig++	0.33	7.7	4.8
	Sherpa	0.55	21.0	9.6
k_T	Pythia 8	0.80	10.4	8.2
	Herwig++	1.17	3.6	4.6
	Sherpa	0.85	10.5	7.5
anti- k_T	Pythia 8	0.79	10.2	8.3
	Herwig++	1.74	3.2	4.5
	Sherpa	0.86	10.2	7.5
Reclustered	Pythia 8	0.77	10.1	8.0
	Herwig++	1.36	3.5	4.8
	Sherpa	0.83	10.1	7.3

$X \rightarrow bb$ taggers: CoM sub-jets

$X \rightarrow bb$ taggers: expected performance

MV2 performance in 2016 and 2017 configuration

MV2 data/MC agreement with new ATLAS software (2017 configuration)

major improvements in tracking simulation in 2017 configuration much better data/MC agreement before any calibration

Soft Muon Tagger in ATLAS

Boosted Decision Tree discriminant based on 6 observables developed for jets including a muon

Calibration of the light flavour background challenging (track resolution effect non-dominant)

b-tagging performance stability in 2017 (1)

Run date

b-tagging performance stability in 2017 (2)

