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Disclaimer on the choice of topics

All ATLAS public results regarding Flavour Tagging are available here:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FlavourTaggingPublicResultsCollisionData

I plan to discuss ...

– a significant part of the b-tagging chain in ATLAS:

→ flavour labeling, track association, identification algorithms, calibration.

– emphasizing the latest developments in the group with public reference

I will not cover∗ ...

– upgrade studies

– online b-tagging performance

– c-tagging → see Andy C’s talk on “H → cc in ATLAS” this morning

– more generally, new developements with not yet public reference

∗sorry in advance if your favorite topic is missing, I will do my best to answer questions
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Why b-jet identification so important at the LHC?

– Identifying jets corresponding to a b-quark (b-tagging) is essential to
many LHC data analysis

– It is possible thanks to the high mass and long lifetime of b-hadrons

Top Physics / New Phenomena

→ top precision measurements

→ many searches, such as searches for
stop pair production (SUSY)

Higgs Physics

→ observation of bb̄ decay mode

→ direct measurement of the top-Higgs
coupling (ttH production)
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1) Flavour labeling

– How do we define a b-jet, a c-jet and a “light-flavour”-jet in
our simulated samples?
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What’s a hadronic jet?

– Initial interacting partons determined from
the Parton Density functions (PDFs)

– Perturbative QCD (matrix elements ME,
parton shower PS), very small timescales
→ coloured final state objects

– Partons can be grouped together via a
clustering algorithm
→ definition of “parton-level” jets

– Parton → Hadrons (hadronization), other
non-perturbative effects (underlying event)
→ definition of “particle-level” jets

– Experimentally, clustering based on
calorimeter energy deposits or
inner detector tracks

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 5/26



What’s a hadronic jet?

– Initial interacting partons determined from
the Parton Density functions (PDFs)

– Perturbative QCD (matrix elements ME,
parton shower PS), very small timescales
→ coloured final state objects

– Partons can be grouped together via a
clustering algorithm
→ definition of “parton-level” jets

– Parton → Hadrons (hadronization), other
non-perturbative effects (underlying event)
→ definition of “particle-level” jets

– Experimentally, clustering based on
calorimeter energy deposits or
inner detector tracks

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 5/26



What’s a hadronic jet?

– Initial interacting partons determined from
the Parton Density functions (PDFs)

– Perturbative QCD (matrix elements ME,
parton shower PS), very small timescales
→ coloured final state objects

– Partons can be grouped together via a
clustering algorithm
→ definition of “parton-level” jets

– Parton → Hadrons (hadronization), other
non-perturbative effects (underlying event)
→ definition of “particle-level” jets

– Experimentally, clustering based on
calorimeter energy deposits or
inner detector tracks

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 5/26



What’s a hadronic b-jet?

1 fixed-order QCD computation: no jets, only limited number of partons

2 + parton shower, one common choice:
jet (with pT > X GeV) including ≥ 1 b-quark with pT > X ′ GeV

3 + hadronisation, non-pert. QCD, one common choice:
jet (with pT > X GeV) including at least one b-hadron with pT > X ′ GeV

– definition of “including” is analysis dependent, for flavour-tagging performance
studies in ATLAS during Run 2 we use:

∆R(b-hadron, jet) =
√

∆η2 + ∆φ2 < 0.3 (priority to closest jet)

Wrapping up, in ATLAS simulation:
b-jets are jets including at least one b-hadron with pT > 5 GeV

c-jets do not include b-hadrons but include at least one c-hadron with pT > 5 GeV

τ -jets do not include b/c-hadrons but include at least one τ -lepton with pT > 5 GeV

LF-jets (“light-flavour”) are all the others
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What about quark/gluon labeling?
A. Buckley, C. Pollard, arXiv:1507.00508 [hep-ph]

– hadron-based labeling not possible → parton-based labeling

– common choice in literature: look at highest pT parton associated with the jet

– common limitations: unphysical partons in truth record, generator dependent,
inconsistent w.r.t perturbative order (partons from ME or PS)...

– QCD-aware parton labeling: kT algorithm on partons + prompt lepton/γ vetoing
proto-jet merging not compatible with a QCD/QED vertex

→ kT ∼ “inversion of the QCD emission sequence”

→ LO generators in good agreement
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2) Jet-to-track association
– Which jet gets which tracks?

Candidate H → bb decay event with two b-jets and two muons recorded in 2016
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Jets and track reconstruction in ATLAS

Muon
spectrometer

– B = 0.5 T (mean)

– muon detection

– not included in the ATLAS
most used b-tagging algo.

Electromagnetic
calorimeter (EM)

– destructive detection of e/γ

– groups of cells with
significant energy deposit

– E and angular Measurement

Hadronic
calorimeter

– destructive detection of
hadrons

– groups of cells with
significant energy deposit

– E and angular measurement

Inner detector
– B = 2 T

– Non-destructive detection of
charged particles

– trajectories, pT

– primary (PV) and secondary
vertices (SV) reconstruction

– track impact parameters

– track momentum (angular)
resolution decreases
(increases) with pT
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Track association algorithms

See ATL-PHYS-PUB-2017-010 for more details

– R = 0.4 anti-kt calorimeter jets are the most common jets in ATLAS

→ shrinking cone algorithm used to determine the tracks used for b-tagging

– Many recent activities studying anti-kt jets based on tracks (track jets)

→ primary use case: b-tagging in dense environment (Top, Higgs, X → bb)

→ studies include e.g. R = 0.2 and variable-R (shrinking cone) track jets
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Subjet reconstruction with tracks

– Reconstruction of 1 large-R jet, adequate constituent (subjet) reconstruction
required to determine substructure accurately

– Tracks have better angular resolution than calorimeter clusters
→ use of track jets ghost-associated with the large-R jet

Probability to find 2 subjets truth-labeled as b
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– currently assessing b-tagging
performance in data of such subjets

– other ideas also explored
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3) b-jet identification algorithm
– Properties of b-hadrons:

1 lifetime:
Vcb small, decay length ∼ 450 µm

2 large mass: few GeV

3 high jet momentum fraction: ∼ 80%
due to b-fragmentation function

4 high branching ratio to leptons: ∼ 20%

– Experimental signatures of b-jets:

presence of displaced tracks

presence of secondary vertices
(B → C → light)

peculiar topology
(more and higher energy tracks)

presence of electron and muon-in-jets
(not used in nominal algorithms)

topology of b- and LF-jets
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“Low-level” b-tagging algorithms in ATLAS

Impact parameter-based algorithm: IP2D/IP3D → used at LEP/Tevatron

– d0: “distance of closest approach
between the track and the primary
vertex (PV) in the transverse plane”

– z0: “distance in longitudinal
direction between the PV and point
of closest approach”

– sign defined w.r.t location of
crossing point btw track and jet axis

– large positive tails for b and c-jets

→ 14 track categories defined

→ log-likelihoods built per jet from
associated tracks and b-, c and
LF-jet IP templates

– IP2D → 1D d0 templates (x,y)
IP3D: → 2D (d0,z0) templates

Track signed d0 significance (Good)
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“Low-level” b-tagging algorithms in ATLAS
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IP2D/IP3D discriminants
see ATL-PHYS-PUB-2016-012 and ATL-PHYS-PUB-2017-013 for more details

log(Pb/Pu) log-likelihood discriminant for IP2D (left) and IP3D (right)
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– log(Pc/Pu) and log(Pb/Pc ) also defined, total of 6 discriminants

– Advantage: very inclusive, simple. Drawback: high sensitivity to jet axis
and material interactions
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New IP algorithm in ATLAS: RNNIP
see ATL-PHYS-PUB-2017-003 and ATL-PHYS-PUB-2017-013 for more details

– Track impact parameters are correlated if they originate from a common decay
(b-, c-hadrons), IP2D/IP3D likelihoods assume no correlation

– New IP algorithm in ATLAS learning about the correlations between tracks in
b-, c- and LF-jets → RNNIP (based on a recurrent neural network)

track IP correlations in b-jets no correlations for LF-jets

– RNNIP outperforms IP3D if including only track category, d0 and z0 significance

– Performance increase if jet pT fraction carried by track and ∆R(track, jet) added

– → studies assessing RNNIP performance in data in progress
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“Low-level” b-tagging algorithms in ATLAS

Inclusive secondary vertex (SV) reconstruction: SV1

– All track pairs within a jet are tested for a
2-track vertex hypothesis

– final fit includes all tracks from 2-trk vtx
→ 1 (or 0) “inclusive” vertex per jet

– Long lifetime of b/c-hadrons
→ more SV in b- and c-jets

– Very good discrimination at low pT but
degradation at high pT

(track reconstruction efficiency decrease,
more 2-trk vtx fakes)

– 8 quantities reconstructed by SV1 are used
as discriminant

– Interesting feature: mis-alignement of the
jet and PV-SV axis at high pT for HF-jets
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see ATL-PHYS-PUB-2017-011
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“Low-level” b-tagging algorithms in ATLAS

Decay chain multi-vertex reconstruction: JetFitter

– J. Phys. Conf. Ser. 119 (2008) 03203

– exploits the topological structure of weak b-
and c-hadron decays to reconstruct the full
b-hadron decay chain

– b-hadron flight axis reconstructed using a
Kalman filter

What SV1 does:

What JetFitter tries:

8 quantities reconstructed by JetFitter are used as discriminant
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“High-level” b-tagging algorithm in ATLAS

pjetT + ηjet + 3 (IP2D/IP3D) + 8 (SV1) + 8 (JF) variables used as input to a
boosted decision tree: MV2 (multi-variate discriminant)

– Algorithm learns how to identify b-jets,
trained on hybrid simulated MC sample

– Provide a weight within [-1,1] telling you
how likely the jet to be a b-jets

– Performance quantified in ROC curve:
signal efficiency vs background rejection
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– MV2, main tagger used in run 2

– MV2Mu includes soft muon
tagger output (see backup)

– MV2MuRNN: muons + RNNIP
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New “high-level” tagger: DL1

– New high-level tagger based on a deep recurrent neural network: DL1

– fed with ∼ the same information than MV2, achieve similar performance

– but higher technology: combined RNNIP/DL1 training, tunable c-jet fraction in
the background sample without retraining, etc, possible

1
/N

 d
N

/d
D

L
1
M

u
R

n
n

3−10

2−10

1−10

1

tt 

Data 2016

MC16

b Jets

c Jets

light−flavour Jets

ATLAS  Preliminary

DL1MuRnn

4− 2− 0 2 4 6 8 10

D
a

ta
/M

C
 

s
­1

 = 13 TeV, 2.5 fb

0.6
0.8

1
1.2
1.4

DL1 iso b-tagging efficiency curves

1 10
c-jet rejection

10

100

lig
ht

-fl
av

ou
r-

je
tr

ej
ec

tio
n

ATLAS Simulation Preliminary√
s = 13 TeV, tt̄

DL1 70% b-tagging efficiency
DL1 77% b-tagging efficiency
DL1 80% b-tagging efficiency

→ currently assessing DL1 b-tagging performance in data
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New “hybrid” training sample

– b-hadron pT spectrum in tt̄ intrinsically limited by mt ∼ 175 GeV

– for pjet
T > mt , jet clusters nearby hadronic activity, uncorrelated to the b-hadron

(e.g. final state radiation) → tt̄-based training may not be optimal

– Use of an hybrid sample: tt̄ (b-hadron pT < 250 GeV) and Z’ (> 250 GeV)

t̄t simulated sample
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b-jet definition in collision data analysis

– Tagger working points (WP) defined as a
certain cut on the BDT output

→ select a certain point on the ROC curves

– “fixed-cut working points”
→ constant cut value on the BDT output

– WP name gives b-efficiency observed in a tt̄
simulated sample, ex: 85% WP

60%

– Alternative b-jets definitions are available to physics analysers

“hybrid WP”: fixed-cut at low jet pT, flat-efficiency cut at high jet pT

“pseudo-continuous calibration”: 5 bins b-tagger output with correlations

– Strong reasons to believe performance in simulation and data differ

for signal (i.e. true b-jets): theory modeling effects. Uncertainty in b-fragmentation function,
underlying event, ..., also pileup, tracking in dense environment at high pT, etc.

for background (i.e. non-b jets): detector effects. Non-perfect tracker geometry, dead pixels, fake
tracks from random hits, material interactions, ..., also pileup, etc.
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4) b-tagging performance in data

– also known as “calibration”
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b-tagging efficiency measurements for
b-jets (signal efficiency)

– sample of true b-jets before any tagging needed

– use of tt̄ fully leptonic decays,
i.e. t → bW (→ lν)

– use of opposite sign eµ + jets channel,
Z(→ ll)+ jets background reduced

– exactly 2 jets required to limit combinatorics to
bb, bl , lb, ll

– flavour fractions and light mistag rate taken
from simulation, binned MV2 output for b-jets
fitted from data (likelihood)

– data and MC compatible, uncertainty: few %,
dominated by tt̄ modeling

T&P tt̄ di- and semi-leptonic and
muon-in-jet analysis also performed

see FTAG-2016-003 (paper in preparation)
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muon-in-jet analysis also performed see FTAG-2016-003 (paper in preparation)
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b-tagging efficiency measurements for
c-jets (fake rate)

– sample of true c-jet before and after any
tagging needed

– use of tt̄ semi-leptonic decays,
i.e. one W→ lν and one W→ cs

– 1 lepton + 4 jets (including 2 b-tagged jets),
kinematic fit to reduce background

– fit of the 2 jets attributed to the W decay

– flavour fractions from simulation, use of
calibration for b- and LF-jets, binned MV2
output for c-jets fitted from data (likelihood)

– c-rejection in data lower than in MC
uncertainty 5-20 %, dominated by tt̄ modeling

analysis based on W + c events
also performed

 2.7±
51.0

 1.5±
55.9

 2.9±
51.9

 1.7±
52.1

 1.8±
52.5

 2.8±
46.8

 [GeV]
T

subleading jet p

[25,40] [40,65] [65,140]

 [G
eV

]
T

le
ad

in
g 

je
t p

[25,40]

[40,65]

[65,140]

ATLAS Simulation Preliminary

 (%)llf

 [GeV]
T

jet p
20 40 60 80 100 120 140

 7
7%

 c
-je

t m
is

ta
g 

S
F

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 calibrationtc-jet from t

SF (stat.)
SF (stat + syst)

ATLAS Preliminary
-1=13 TeV, 36 fbs

see ATLAS-CONF-2018-001

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 24/26

https://cds.cern.ch/record/2306649


b-tagging efficiency measurements for
c-jets (fake rate)

– sample of true c-jet before and after any
tagging needed

– use of tt̄ semi-leptonic decays,
i.e. one W→ lν and one W→ cs

– 1 lepton + 4 jets (including 2 b-tagged jets),
kinematic fit to reduce background

– fit of the 2 jets attributed to the W decay

– flavour fractions from simulation, use of
calibration for b- and LF-jets, binned MV2
output for c-jets fitted from data (likelihood)

– c-rejection in data lower than in MC
uncertainty 5-20 %, dominated by tt̄ modeling

analysis based on W + c events
also performed

 2.7±
51.0

 1.5±
55.9

 2.9±
51.9

 1.7±
52.1

 1.8±
52.5

 2.8±
46.8

 [GeV]
T

subleading jet p

[25,40] [40,65] [65,140]

 [G
eV

]
T

le
ad

in
g 

je
t p

[25,40]

[40,65]

[65,140]

ATLAS Simulation Preliminary

 (%)llf

 [GeV]
T

jet p
20 40 60 80 100 120 140

 7
7%

 c
-je

t m
is

ta
g 

S
F

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 calibrationtc-jet from t

SF (stat.)
SF (stat + syst)

ATLAS Preliminary
-1=13 TeV, 36 fbs

see ATLAS-CONF-2018-001

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 24/26

https://cds.cern.ch/record/2306649


b-tagging efficiency measurements for
c-jets (fake rate)

– sample of true c-jet before and after any
tagging needed

– use of tt̄ semi-leptonic decays,
i.e. one W→ lν and one W→ cs

– 1 lepton + 4 jets (including 2 b-tagged jets),
kinematic fit to reduce background

– fit of the 2 jets attributed to the W decay

– flavour fractions from simulation, use of
calibration for b- and LF-jets, binned MV2
output for c-jets fitted from data (likelihood)

– c-rejection in data lower than in MC
uncertainty 5-20 %, dominated by tt̄ modeling

analysis based on W + c events
also performed

 2.7±
51.0

 1.5±
55.9

 2.9±
51.9

 1.7±
52.1

 1.8±
52.5

 2.8±
46.8

 [GeV]
T

subleading jet p

[25,40] [40,65] [65,140]

 [G
eV

]
T

le
ad

in
g 

je
t p

[25,40]

[40,65]

[65,140]

ATLAS Simulation Preliminary

 (%)llf

 [GeV]
T

jet p
20 40 60 80 100 120 140

 7
7%

 c
-je

t m
is

ta
g 

S
F

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 calibrationtc-jet from t

SF (stat.)
SF (stat + syst)

ATLAS Preliminary
-1=13 TeV, 36 fbs

see ATLAS-CONF-2018-001

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 24/26

https://cds.cern.ch/record/2306649


b-tagging efficiency measurements for
c-jets (fake rate)

– sample of true c-jet before and after any
tagging needed

– use of tt̄ semi-leptonic decays,
i.e. one W→ lν and one W→ cs

– 1 lepton + 4 jets (including 2 b-tagged jets),
kinematic fit to reduce background

– fit of the 2 jets attributed to the W decay

– flavour fractions from simulation, use of
calibration for b- and LF-jets, binned MV2
output for c-jets fitted from data (likelihood)

– c-rejection in data lower than in MC
uncertainty 5-20 %, dominated by tt̄ modeling

cut & count analysis based on W + c
events also performed

 2.7±
51.0

 1.5±
55.9

 2.9±
51.9

 1.7±
52.1

 1.8±
52.5

 2.8±
46.8

 [GeV]
T

subleading jet p

[25,40] [40,65] [65,140]

 [G
eV

]
T

le
ad

in
g 

je
t p

[25,40]

[40,65]

[65,140]

ATLAS Simulation Preliminary

 (%)llf

 [GeV]
T

jet p
20 40 60 80 100 120 140

 7
7%

 c
-je

t m
is

ta
g 

S
F

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 calibrationtc-jet from t

SF (stat.)
SF (stat + syst)

ATLAS Preliminary
-1=13 TeV, 36 fbs

see ATLAS-CONF-2018-001

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 24/26

https://cds.cern.ch/record/2306649


b-tagging efficiency measurements for
light-jets (fake rate)

– sample of true light-jet before and after
any tagging needed

– not achievable by regular di-jet selection:
∼ 2% (5%) b-(c-)jet bef tag ... x10 after.

– use of a “flipped” tagger to calibrate
fakes from track resolution effects

– tag jets with negative attributes
→ similar mistag rate for light
(resolution function symmetric)
→ much lower rate for b and c

→ obtention of a purer sample after tag

– LF-rejection in data lower than in MC,
high uncertainties (∼ 10-40%) related to
limited flipped tagger performance

new bottom-up approach
“adjusted-MC method” also performed
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see FTAG-2017-002
(conference note in preparation)
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Conclusion

– b-tagging is an essential tool for many key measurements at the LHC

– an overview of the latest algorithm developments and performance measurements
performed by the ATLAS collaboration was presented

– machine learning based algorithms improve significantly the performance

strong dependence of the tracking and vertexing performance versus pT,
high background → not 1 golden discrimination variable

many measurements available from tracking

– the calibration of these algorithms is a real challenge

complexity of the algorithms, limited “clean” data samples of c- and LF-jets

nature of the fakes change with WP tightness (resolution → fake tracks)

– many challenges, among them:

b-tagging beyond the tt̄ kinematic reach: algorithm & calibration

calibration of the LF-jets mistagged not because of track resolution effects
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Performance of b-jet
identification in ATLAS.

Back-up slides
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QCD-aware parton labeling vertices

kt : n = 1, C/A: n = 0, anti-kt : n = −1
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QCD-aware parton labeling with MPI on

MPI-quark particularly problematic since they can turn a gluon jet into a quark-jet

High discrepancy of Herwig++ MPI simulation with respect to the other generators
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X → bb taggers: CoM sub-jets
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X → bb taggers: expected performance

Matthias Saimpert — DESY (Hamburg) — 11 April 2018 — Page 5/10



MV2 performance in 2016 and 2017
configuration
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MV2 data/MC agreement with new
ATLAS software (2017 configuration)

major improvements in tracking simulation in 2017 configuration
much better data/MC agreement before any calibration
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Soft Muon Tagger in ATLAS

Boosted Decision Tree discriminant based on 6 observables developed for jets
including a muon
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Calibration of the light flavour background challenging (track resolution effect
non-dominant)
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b-tagging performance stability in 2017 (1)
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b-tagging performance stability in 2017 (2)
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