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Introduction - Charm Yukawa Coupling

Why is the charm quark Yukawa coupling
important?

m The smallness of the charm (c) quark coupling
(ye = Y2melma) 1 4 % 1073) make it highly
susceptible to modifications from potential
new physics

m H — cC decays constitute the largest part of
the SM prediction for 'y for which we have
no experimental evidence

m To date, we only have experimental evidence
for 3rd generation Yukawa couplings!

What are the existing indirect constraints?

OH — bb
OH — cC
mH — s§
O H — other

Cartoon of SM 125 GeV H — qg branching

fractions, H — uﬁ/dc? too small to show!

m Constraints on unobserved Higgs decays impose around B(H — ¢¢) < 20%, global
fits to LHC data indirectly bound Iy leading to yc/yCSM < 6, assuming SM Higgs
production and no BSM decays (arxiv:1310.7029, arXiv:1503.00290)

m Direct bound of around 'y < 1 GeV from H — ~+ and H — 4/ lineshapes impose
around y./y2™ < 120, but this is model independent (arxiv:1503.00200)

How can we constrain these couplings in a more direct way?
-


https://arxiv.org/abs/1310.7029
https://arxiv.org/abs/1503.00290
https://arxiv.org/abs/1503.00290
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Direct probes of the charm qurk Yukawa couplings at the LHC i7

How can we constrain the charm Yukawa couplings in a more direct way?

Exclusive H — J /v ~ decays

m Exclusive radiative Higgs decays to J/v are sensitive to Hc€ couplings, very rare in
SM with B(H — J/¢ ) = (2.8 4 0.2) x 107° (arxiv:1407 6695)

m Both ATLAS (arxiv:1501.03276) and CMS (arxiv:1507.03031) have searched for such decays,
both leading to limits of B(H — J/¢ ) < 1.5 x 1073

m Implies bound on charm Yukawa coupling of yc/yCSM < 220 at 95% CL (arxiv:1503.00290)

m Side Note: The analogous decays H — ¢y and H — p~y are sensitive to the light
quark Yukawa couplings (see arXiv:1712.02758)

Kinematic distributions in inclusive production

m Modifications to the heavy quark Q@ = ¢, b Yukawa couplings could change the shape
of the inclusive p4! spectrum due to enhanced gQ — HQ contribution (arxiv:1606.09621)

m p% well measured in the H — 4y and H — 4¢ channels, which imposes a 95% CL
bound of —16 < yc/yCSM < 18, based on Run 1 ATLAS + CMS results (arxiv:1606.09253)

Inclusive H — cc decays
m Study inclusive H — cC decays with c-tagged jets, direct sensitivity to HcC coupling
m First search from LHCb, though only sensitive to ~ 5000 SM rate (LHCb-CONF-2016-006)
m Recent ATLAS search for Z(¢¢)H(cc) production (arxiv:1802.04329), focus of this talk!
T


https://arxiv.org/abs/1712.02758

The ATLAS Detector at the LHC

General purpose detector, well suited to studying heavy flavour jets

r=1082mm

Tile calorimeters

LAr hadronic end-cap and
\ forward calorimeter

Toroid magnefs

LAr electromagnetic calorimeters : it
Pixels

Muon chambers  Solenoid magnet | Transition radiiation fracker

Semiconductor fracker

Inner Detector (ID): Silicon Pixels and Strips (SCT) with Transition Radiation
Tracker (TRT) |n| < 2.5 and (new for Run 2) Insertable B-Layer (IBL)

LAr EM Calorimeter: Highly granular + longitudinally segmented (3-4 layers)
Had. Calorimeter: Plastic scintillator tiles with iron absorber (LAr in fwd. region)
Muon Spectrometer (MS): Triggering |n| < 2.4 and Precision Tracking |n| < 2.7
Jet Energy Resolution: Typically o¢/E ~ 50%/+/E( GeV) @ 3%

Track IP Resolution: o4, = 60 pm and o, ~ 140 pm for pr =1 GeV (with IBL)




Introduction ZH, H — CC (arxiv:1802.04329, Submitted to Phys. Rev. Lett.)

Given the success of the W /Z associated production channel in providing evidence
for H — bb decays', this channel is an obvious first candidate for a H — ¢ search

VAN _
p ] H
V4
H
q V4
_ p pp — ZH dominated qg — ZH processes,
4 o =~ 0.76 pb at /5 = 13 TeV
. . b
m Focus on ZH productlgn with Z — e e and et st S H
Z — utp~ decays for first ATLAS analysis
m Low exposure to experimental uncertainties, main
backgrounds from Z + jets, Z(W/Z) and tt
m Pioneer use of new c-tagging algorithms developed
by ATLAS for Run 2 to identify the experimental & Iy z
Signature of an inclusive H — ¢c¢ decay Smaller contributions from gg — ZH, but

harder p-'l:’, o =~ 0.12pb at /s = 13 TeV
1 ATLAS: arXiv:1708.03299 CMS: arXiv:1708.04188
RS


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-29/
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-17-006/index.html

on to c-jet tagging: Algorithm

New c-tagging algorithms developed by ATLAS for Run 2!
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m Multivariate discriminant(s) built from input variables from low-level b-tagging
algorithms (e.g. track impact parameter likelihood, secondary vertex finder)

m Trained with the same input variables used by the standard ATLAS Run 2 b-tagging
algorithm (see ATL-PHYS-PUB-2015-022 for details)

m Implemented as two BDT discriminants, one trained to separate c-jets from b-jets
(x-axis), another to separate c-jets from light-jets (y-axis)

“c-tag” jets by making a cut in the 2D discriminant space, working point optimised
for ZH, H — cc is shown in the rectangular selection (shaded region rejected)


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2015-022/
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Efficiency of c-tagging algorithm for b-, c- and light flavour jets measured in data 1

m Working point for ZH, H — cC exhibits a c-jet tagging efficiency of around 40%
m Rejects b-jets by around a factor 4x and light jets by around a factor 10x

m Efficiency calibrated in data with samples of b-jets from t — Wb (ATLAS-CONF-2014-004)
and c-jets from W — cs, cd in tt events (ATLAS-CONF-2018-001)

m Typical total relative uncertainties of around 20%, 5% and 20% for c-, b- and light
jets, respectively


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-004/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-001/

Data Sample and Event Selection

Use a v/s = 13 TeV pp collision sample collected during 2015 and 2016
corresponding to an integrated luminosity of 36.1fb™?

Z — £T£~ Selection
Trigger with lowest available pr
single electron or muon triggers

Exactly two same flavour
reconstructed leptons (e or u)

Both leptons pt > 7 GeV and at
least one with pr > 27 GeV

Require opposite charges
(dimuons only)

81 < myr < 101 GeV
pZ > 75 GeV

H — cc Selection

Consider anti-kt R = 0.4
calorimeter jets with || < 2.5 and
pt > 20 GeV

At least two jets with leading jet
pt > 45 GeV

Form H — cc candidate from the
two highest pr jets in an event

At least one c-tagged jet from
H — cC candidate

Dijet angular separation AR};
requirement which varies with pZ

Split events into 4 categories (with varying S/B) based on
H — ¢t candidates with 1 or 2 c-tags and p? above/below 150 GeV




Signal and Background Modelling

Background Modelling

m Background dominated by Z + jets —
(enriched in heavy flavour jets)

m Smaller contributions from ZZ(qg),

ZW(qqg') and tt

m Negligible (< 0.5%) contributions from
W + jets, WW, single-top and multi-jet

Simulation of ZH(cc/bb)

m Normalised with LHC Higgs XS WG YR4
recommendations (arXiv:1610.07922)

m ZH(bb) treated as background normalised
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MC Generator

Normalisation Cross section

q§ — ZH(cc/bb)
gg — ZH(c&/bb)
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Z + jets
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The nominal MC generators used to model the signal and backgrounds
-


https://arxiv.org/abs/1610.07922

Background composition after c-tagging
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Z + jets flavour composition after c-tagging

1 c-tag events

J Left

Events / 10 GeV

Events / 10 GeV

Flavour composition of the Z + jets sample enriched with c-jets
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ZZ and ZW flavour composition after c-tagging

c-tagged ZZ and ZW production enriched in Z — cc and decays
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Quantifying the presence/absence of ZH(cc) production

Statistical Model
m Use the H — ¢C candidate invariant mass mcz as S/B discriminant

m Perform simultaneous binned likelihood fit to 4 categories within region
50 < mez < 200 GeV

m ZH(cC) signal parameterised with free signal strength parameter, ©, common to all
categories

m Z + jets background determined directly from data with separate free normalisation
parameter for each of the four categories

Systematic Uncertainties

m Included in the fit model as constrained nuisance parameters which parametrize the
constraints from auxiliary measurements (e.g. lepton/jet calibrations)

m Experimental uncertainties associated with luminosity, c-tagging, lepton and jet
performance are all included in the model

m Normalisation, acceptance and mcz shape uncertainties associated with signal and
background simulation are also included



Fit Result
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Fit Result
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nderstanding the Sens
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Sensitivity dominated by systematic uncertainties, clear that these uncertainties
should be reduced in order to fully exploit a larger dataset in the future

AlL
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Note: correlations between nuisance parameters

2

within groups leads to )_; a‘? # Oyt

c-tagging uncertainties and background
modelling (particularly Z + jets mcz
shape) have the dominant impact

However, we can expect many of these
uncertainties (e.g. Z + jets normalisation)
to reduce with a larger dataset



Results

Cross check with ZV production

m To validate background modelling and uncertainty prescriptions, measure production
rate of the sum of ZZ and ZW relative to the SM expectation

m Observe (expect) ZV production with significance of 1.40 (2.20)

m Measure ZV signal strength of 0.67%5, consistent with SM expectation

Limits on ZH(cc) production

95% CL CLs upper limit on o(pp — ZH) x B(H — ¢¢) [pb]
Observed | Median Expected | Expected +10 | Expected —1o
2.7 3.9 6.0 2.8

m No evidence for ZH(c€) production with current dataset (as expected)

m Upper limit of o(pp — ZH) X B(H — c€) < 2.7 pb set at 95% CL, to be
compared to an SM value of 2.55 x 10~2 pb

m Corresponds to 110X the SM expectation

World’s most stringent direct constraint on inclusive H — cc decays!



Summary and Prospects

Summary

m Search for ZH(c€) production exploiting new c-tagging techniques provides limit of
o(pp — ZH) X B(H — cc) < 2.7 pb excluding 110X SM expectation

m Demonstrates that this inclusive channel is likely more sensitive to the charm quark
Yukawa coupling than the exclusive H — J/ ~ channel

m Not yet able to compete with constraints obtained from interpreting measurements of
Higgs boson kinematic distributions in terms of modified gc — Hc production

m Clear that no single approach can yet claim it will manage to probe the charm
quark Yukawa coupling down to the SM prediction by the end of the LHC era

m Likely that multiple approaches will be required, this channel will become ever more
important as larger datasets are collected!

What next for inclusive H — cc decays?
m Large gains in sensitivity possible with multivariate techniques and other VH channels
(e.g. W(£v)/Z(vv)) or a dedicated search/category in the high p¥ boosted regime

m If future c-tagging algorithms can reach the performance of today's b-tagging, one
could probably expect to observe H — ¢C decays by the end of the LHC programme!

m Performance of c-tagging is developing rapidly, next generation algorithms already
exploit advanced ML techniques (ATL-PHYS-PUB-2017-013), huge scope for innovation!


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-013/

Additional Slides



Examples of c-tagging input variables
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More details in ATL-PHYS-PUB-2016-012
T



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-012/

H — Q ~ - Introduction

H — Q ~ decays could provide a clean probe of the charm and light quark couplings

m Qs a vector (JP© = 177) light meson or quarkonium
state such as V = J/4, ¢, p(770) \%

m Interference between direct (H — gg) and indirect
(H — v¥*) contributions H

m Direct (upper diagram) amplitude provides sensitivity to
the magnitude and sign of the Hqg couplings (i.e.
Q = J/1 sensitive to Hc€ coupling)

m Indirect (lower diagram) amplitude provides dominant
contribution to the width, not sensitive to Yukawa
couplings

m Very rare decays in the SM!

B(H— J/v¥~)=(28+02)x107%
B(H— ¢~)=(23£0.1) x 10°° ~
B(H— pvy)=(1.7£01)x107° ¢

More details: 1 JHEP 1508 (2015) 012 (arXiv:1505.03870) and { Phys. Rev. D 90, 113010 (2014) (arXiv:1407.6695)




PRL 114, 121801 015) PHYSICAL REVIEW LETTERS Pyt

Search for Higgs and Z Boson Decays to J/yy and Y(nS)y with the ATLAS Detector

m Studied quarkonium decays, in particular
H — J/¢y (with J/vp — p'p™)
m Similar limit subsequently found by CMS*

m First direct information on decay modes
sensitive to the HcC coupling

m Interpreted as Hcc coupling limit of
ye/yM < 220 at 95% CL* (assuming
dependence on o(pp — H)/T'H is removed
by considering ratio with H — 4/ rate)

 Phys. Lett. B753 (2016) 341 (arXiv:1507.03031)
1 Phys. Rev. D92, 033016 (2015) (arXiv:1503.00290)
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Branching fraction limit (95% cL):
B(H— J/¢¥~) <15 x 1073
Around 500x the SM expectation



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2014-03/

Prospects for H — J /1~ in a HL-LHC scenario
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Associated Higgs boson + charm quark production
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1 Left: Effect of modified < on p'-}' from cg — Hc diagrams Right: bounds from Run 1 data (both from arXiv:1606.09253)
m In the case of a modified heavy quark Q = ¢, b Yukawa coupling, the shape of the

inclusive p% spectrum would change due to the modified gQ — HQ contribution

m pY can be measured in the H — 4 and H — 4¢ channels, which imposes a 95% CL
bound of —16 < y./y™ < 18 (arXiv:1606.09253, based on ATLAS+CMS Run 1)

m Projecting to HL-LHC scenario with 3ab™?, bound evolves to —0.6 < y./yo™ < 3.0



