

Monday March 12, 2018 : CHUV

Monday March 12, 2018 : CHUV
Introduction to Medical Imaging

	Raciochemistry of Rationeals	Toenoea
13.00		
	Assitroum Charote Ofiver Chur	12.45-1330
	Smal:Animal Imaging Teemiques	0 Verll ${ }^{\text {B }}$
14.00		1330-1415
	Vsth t the Peisseccrict rom and the Reatiopharmacy rea	0. vereat
	chuv	14.15-1500
15.00	Corte braak	
	chur	15500-1530
	Celluar Immuncterapy:Chalenges tom Eench to Eessise	4 Kancosert
16.00		1530-16:15
	Theranostics in in Era of Modern Onoology	N. Senater
	Ausinumum Charote onver, Culv	1615-17700

Chapter 12: Computers in Nuclear Medicine

Set of 140 slides based on the chapter authored by
J. A. Parker
of the IAEA publication (ISBN 78-92-0-143810-2):
Nuclear Medicine Physics:
A Handbook for Teachers and Students

Objective:
To familiarize the student with the fundamental concepts of computers and their application to nuclear medicine

Side set prepared in 2015
R. Fulton (Westmead

Hospital and University of Sydney)
IAEA

12.2 STORING IMAGES ON A COMPUTER 12.2.2 Data representation

Integer numbers

\square A group of binary digits (bits) can be interpreted in several different ways. The simplest is as a positive integer, numbers $0,1,2,3$, etc.

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5

Q IIAEA

12.2 STORING IMAGES ON A COMPUTER

 12.2.3 Images and volumes\square Images can be represented by 2-D functions. If x and y are taken to be horizontal and vertical, a 2-D function, $f(x, y)$, gives the value of the image at each point in the image.
\square Ever increasingly, imaging equipment produces not a single image, but a 3-D volume of data, e.g. right to left, anterior to posterior and caudal to cephalic. A volume of data can be represented as a 3-D function, $f(x, y, z)$.
\square One of the challenges of data visualization is to facilitate the input of 3-D data using the 2-D channel afforded by the human visual system.

```
*)IAEA
```

IAEA Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 -Sidde 8140

12.2 STORING IMAGES ON A COMPUTER 12.2.3 Images and volumes

Matrix representation

\square The surface of the gamma camera can be visualized as being divided into tiny squares. An element in a 2-D matrix can represent each of these squares. A 3-D matrix can represent a dynamic series of images or single photon emission computed tomography (SPECT) data collection. A 3-D matrix is equivalent to a 3-D digital function, $f(x, y, z)$. Both representations are equivalent to the computer program language representation, $f[z][y][x]$.

IAEA

Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 - Silde $101 / 40$
12.3 IMAGE PROCESSING
12.3.1 Spatial frequencies

Basis functions
\square A function, $f(t)$, can be made up of a sum of other functions, e.g. a constant, a line passing through the origin, a parabola centred at the origin, etc. Such a sum of functions can be written as a polynomial, i.e. the sum of K powers of t :

$$
\begin{equation*}
f(t)=\sum_{k=0}^{K-1} a_{k} t^{k} \tag{12.1}
\end{equation*}
$$The terms t^{k} are basis functions, with coefficients a_{k} Selecting different coefficients a_{k}, a large number of functions can be represented.

Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 - Side $11 / 1 / 40$

12.3 IMAGE PROCESSING

12.3.1 Spatial frequencies

Fourier transform
The Fourier transform equations can be written compactly using complex exponentials:

$$
\begin{align*}
F(\omega) & =\int f(t) e^{-i \omega t} \mathrm{~d} t \tag{12.3}\\
f(t) & =\frac{1}{2 \pi} \int F(\omega) e^{i \omega t} \mathrm{~d} \omega \tag{12.4}
\end{align*}
$$

where $i=\sqrt{-1}$

IIAEA
Nuclear Medicine Physics: A Handbook for Teachers and Suddents - Chapter 12 - Silde 12140

12.3 IMAGE PROCESSING 12.3.4 Filtering

\square Conceptually, the purpose of filtering is to alter the frequency components of a signal
\square The data are thought of in terms of their frequency or spatial frequency content, not in terms of their time or space content.
\square The most efficient process in general is (i) Fourier transform, (ii) multiply by a filter and (iii) inverse Fourier transform.
\square Convolution performs this same operation in the time or space domain but, in general, is less efficient.

```
*)IAEA
IAEA
```


12.3 IMAGE PROCESSING

12.3.4 Two- and three-dimensional processing
\square Two dimensional processing is exactly analogous to 1-D processing with the 1-D variables t and ω replaced with the 2-D variables x, y and k_{x}, k_{y}. For 3-D processing, t is replaced by x, y, z, and ω is replaced by k_{x}, k_{y}, k_{z}. Four-five-, six-, etc. dimensional processing can be performed similarly.
\square A property of the Fourier transform equations is separability - the transform with respect to x can be performed first followed by the transform on y. A 2-D transform can be performed by first doing the transform on the rows, and then doing the transform on the columns. All that is needed is a 1-D Fourier transform subroutine

```
IIAEA
```


12.3 IMAGE PROCESSING

12.3.5 Band-pass filters

Low-pass, noise suppression and smoothing filters
A low-pass filter is a type of band-pass filter that passes low frequencies and stops high frequencies.
\square In an image, the high spatial frequencies are needed for detail.
\square Zeroing or suppressing the high spatial frequencies compared to the lower frequencies smooths the image, by suppressing the image noise.
\square Low-pass filters both smooth an image and decrease the noise in an image.

12.3 IMAGE PROCESSING
 12.3.5 Band-pass filters

Low-pass, noise suppression and smoothing filters
\square A common method of implementing a low-pass filter is as a convolution with a small kernel. Below is a 3-by-3 smoothing kernel, also commonly called a 9-point smoothing kernel. Each point in the smoothed image is made up of the scaled sum of nine surrounding points.
3×3 smoothing kerne

1	2	1
2	4	2
1	2	1

Nuclear Medicine Physics: A Handbook tor Teachers and Students - Chapter 12 -SIIde $17 / 140$

12.3 IMAGE PROCESSING

12.3.5 Band-pass filters

Low-pass, noise suppression and smoothing filters
\square Below at left is a 5×5 smoothing kernel. Each point is
made up of the scaled sum of 25 surrounding points.

1	2	3	2	1	-1	-1	-1	-1	-1	0	0	-1	0	0	0	-1	0	1	0
2	4	8	4	2	- 1	-1	-1	-1	-1	0	-1	-2	-1	0	0	-1	0	1	0
4	8	16	8	4	-1	-1	25	-1	-1	-1	-2	17	-2	-2	0	-1	0	1	0
2	4	8	4	2	-1	-1	-1	-1	-1	0	-1	-2	-1	0	0	-1	0	1	0
1	2	3	2	1	-1	-1	-1	-1	-1	0	0	-1	0	-0	0	-1	0	1	0

Three other kernels commonly used in image processing are also shown. The next slide shows the effect of the smoothing filter on an image.

Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 - Silde $18 / 140$
12.3 IMAGE PROCESSING
12.3.5 Band-pass filters

Low-pass, noise suppression and smoothing filters

FIG. 12.2. The upper left quadrant shows a circular region of constant intensity; the upper right
shows the effect of applying a 5 -by- 5 smoothing kernel; the lower left shows a very noisy version of the circular region; the bottom right shows the effect of applying a 5 -by- 5 smoothing kernel.
(\& IAEA
12.3 IMAGE PROCESSING 12.3.5 Band-pass filters

Low-pass, noise suppression and smoothing filters
\square The filter is sometimes shown in terms of the square of the filter, $1 /\left(1+\left(k / k_{0}\right)^{2 n}\right)$.
\square In that case, the filter reaches the value of half at the cut-off frequency.The filter is sometimes defined with an exponent of n instead of $2 n$
(Q)IAEA

12.3 IMAGE PROCESSING 12.3.5 Band-pass filters

High-pass and edge-detection
\square Below is the 5×5 sharpening filter kernel from a previous slide and its effect on two images.

12.4 DATA ACQUISITION

12.4.2 Static and dynamic planar acquisition
\square Many of the processes of interest in nuclear medicine involve a changing pattern of distribution of a radiopharmaceutical in the body. In matrix mode, a sequence of images collected over time allows visualization and measurement of the biodistribution of the radiopharmaceutical. Each image is often called a frame of data. Collection of a sequence of images over time is called a dynamic acquisition; collection of an image at a single point in time is called a static acquisition.
While memory and storage were once expensive and limited, nowadays the selected matrix size should be large enough to ensure that image quality is not compromised.

Nuclear Meedicine Physics: A Handbook tor Teachers and Students - Chapter 12 - Silde $23 / 140$

IAEA
Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 - Sidde 24140

12.4 DATA ACQUISITION

 12.4.5 Gated acquisition\square Data acquisition can be gated to a physiological signal.
Owing to count limitation, if the signal is repetitive, the data from multiple cycles are usually summed together.
\square A gated, static acquisition will have three dimensions - two spatial and one physiological.
\square A gated dynamic acquisition will have four dimensions two spatial, one time and one physiological.
\square A gated SPECT or PET acquisition will have a different four dimensions - three spatial and one physiological. A gated dynamic SPECT or PET acquisition will have five dimensions - three spatial, one time and one physiological.

```
ZIAEA
```


12.4 DATA ACQUISITION

12.4.5 Gated acquisition

Respiratory-synchronized

\square Gating to respiration has been used in nuclear medicine both to study respiratory processes and to ameliorate the blurring caused by breathing.

- Successful synchronization has been based on chest or abdominal position changes, and on image data.
- Chest and abdominal motion often correlate with the respiratory cycle, although detection of motion and changes in diaphragmatic versus chest wall breathing also pose problems. Although difficult to measure, respiratory gating is becoming more common in PET and CT

```
IIAEA
```

Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapiter 12 - Silde $27 / 140$

2.4 DATA ACQUISITION

12.4.6 List mode

List mode data can be easily converted (framed) into matrix mode data.
\square There it offers useful flexibility, in that it can be reframed as many times as desired to create a matrix mode study with any desired matrix size and any desired frame rate. Even the frame rate can be varied during the study if desired.
This is useful if the optimum frame rate is not known in advance.

12.4 DATA ACQUISITION

12.4.5 Gated acquisition

Cardiac-synchronized

\square Gated cardiac studies were one of the early studies in nuclear medicine. Usually, the electrocardiogram is used to identify cardiac timing.
\square For evaluation of systolic and early diastolic events, it is better to sum cycles using constant timing from the R-wave than to divide different cycles using a constant proportion of the cycle length
However, with constant timing, different amounts of data are collected in later frames. Normalizing the data for the number of cycles contributing to each frame can ameliorate this problem.

```
IIAEA
```


12.4 DATA ACQUISITION

12.4.6 List mode

Instead of collecting data as a sequence of matrixes or frames, the position of each scintillation can be recorded sequentially in a list. Periodically, a special mark is entered into the list, typically every 1 ms , that gives the time and may include physiological data such as the electrocardiogram or respiratory phase.
\square List mode data requires more storage space than matrix mode. For example, a 1 million-count frame of data collected into a 256 -by- 256 matrix will require 64 k memory locations. In list mode, the same data will require 1 million memory locations. However list mode contains some additional information, the order of event arrival.

```
IAEA
```


12.5 FILE FORMAT

12.5.4 Nuclear medicine data requirements
\square There are two types of information in a nuclear medicine study - image information and non-image information.
\square The general purpose image and movie formats described above usually lack capabilities that would be optimal for medical imaging

12.5 FILE FORMAT

12.5.4 Nuclear medicine data requirements

Non-image information

\square There is unique nuclear medicine information that must be carried along reliably with the images.
\square This information includes identification data, e.g. name, medical record number; study data, e.g. type of study, pharmaceutical; how the image was acquired, e.g. study date, view; etc. This information is sometimes called metainformation.
\square Most general image formats are not flexible enough to carry this information along with the image.IAEA
IAEA
Culear Medicine Physics: A Handoook for Teachers and Students - Chapter 12 - Side 31140

12.5 FILE FORMAT

12.5.5 Common nuclear medicine data storage formats

Digital Imaging and Communications in Medicine (DICOM)
\square DICOM is the most widely accepted radiological imaging format. DICOM began as ACR-NEMA, a collaboration between the American College of Radiology and the National Electrical Manufacturers Association.
\square DICOM is often thought of as a file format; however, the standard covers communication more broadly. It defines a transmission protocol, a query and retrieval standard, and workflow management. Unfortunately, it is overly complex non-self-describing, and has a heavy 2-D image bias (see Sec. 12.6.4)

```
```

|IAEA

```
```

```
```

|IAEA

```
```


12.6 INFORMATION SYSTEM

 12.6.3 Radiology Information System\square The radiology information system (RIS) supports scheduling, performing, reporting of procedure results and billing. When nuclear medicine is a division of radiology, the RIS usually also functions as the nuclear medicine information system.
\square However, nuclear medicine procedures have some unique characteristics, such as studies that extend over several days, which may not be well handled by a general purpose RIS.

```
IAEA
```

IIAEA
Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 -Silde $33 / 140$
12.6 INFORMATION SYSTEM
12.6.4 Picture Archiving and Communication SystemThe image information from the imaging equipment is usually stored in a picture archiving and communication system (PACS) that is separate from but coordinated with the radiology/nuclear medicine information system. DICOM is the predominant standard for PACSs.

IIAEA
Nuclear Medicine Physics: A Handbook for Teachers and Sudents - Chapter 12 -SIIde 35140

2.6 INFORMATION SYSTEM

12.6.4 Picture Archiving and Communication System

Study

\square The top level of organization in DICOM is the study. This level of organization comes from the organization of the health care system. Health care providers request services from radiology/nuclear medicine by a request for a consultation. Imaging or another service is performed and a report, ideally including image information, is returned to the provider. Each study is linked to a single patient, but a patient can have any number of separate studies.

IIAEA
Nuclear Medicine Physics: A Handbook for Teachers and Students - Chapter 12 -SIIde $36 / 40$

12.6 INFORMATION SYSTEM

12.6.4 Picture Archiving and Communication System

Sequence

\square Sequence is the next level of organization in DICOM. Sequence comes from a sequence of images; for a volume of image data, sequence is the top level of organization. For example, it is common to collect a sequence of axial images. A more general name for this level of organization would be dataset.

```
Q IIAEA
    IAEA
```

Uclear Medicine Physics: A Handbook tor Teachers and Students - Chapter 12 -Sided 371440

12.6 INFORMATION SYSTEM

12.6.4 Picture Archiving and Communication System

Image

\square Originally, DICOM used a 2-D image as the basic atom. Other data structures are composed of a number of images. Metadata are included with each image, defining the structure of the image, patient information, data collection information and relation of the image to other images. Somewhat more recently, a multiframe format was defined in DICOM. One file may contain information from a volume of data, from a time series, from a gated sequence, from different photopeaks, etc.

```
IAEA
```

```
IAEA
```


12.6 INFORMATION SYSTEM

 12.6.4 Picture Archiving and Communication System
N -dimensional data

\square It is unfortunate that DICOM selected the image as the basic atom of organization.
\square Even before it was introduced, it was apparent that an N dimensional data model would be more appropriate. Nuclear medicine and MRI often dealt with 1-D curves, 2-D images, 3-D volumes, 4-D gated or dynamic volumes, etc. However, radiology tended to be film based, and volume data such as CT was anisotropic, so some of the early developers had an image based orientation.

```
IAEA
```

Nuclear Mesicine Physis: A Handobook for Teachers and Sutdents - Chapter 12-SIIde $40 / 140$

