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Presentation

* Nick Ryckx, PhD

« SSRMP medical physicist
— Institute of radiation physics, CHUV
— Specialty in radiodiagnostics
« Computed tomography (CT)

« Radioscopy
 Nuclear medicine




)
=
2

Table of contents

 Computed tomography (CT)
— Image acquisition
— Dosimetry

 Magnetic resonance imaging
— Background physics
— Image acquisition




)
=
2

Table of contents

 Computed tomography (CT)
— Image acquisition




@Vald

Conventional X-ray imaging

« All anatomical
structures projected
on a single plane

e Impossible to
calculate linear
attenuation

body tissues

coefficients () of all
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Apparatus

« Generator
o X-ray tube
e Collimation

e Detector







2-step procedure

e Step 1: acquisition of « Step 2: image
X-ray attenuation reconstruction
profiles under different starting from the
angles angles attenuation profiles
(projections)  imaioner .

rotation continue

rogression de la spirale
ans |'espace et dans le temps

[o Xy v] |

7L s

Figure 3.25. Principe du mode spiralé ou hélicoidal.
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Sequential or helical acquisition

Mo

Pitch=1 pitch=1.5 pitch = 2

Sequential (step-and-shoot) 4=1%L d=18xl d=9 ¥l

Table motion during a 360° rotation

Pitch = ;
X-ray beam width
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Acquisition




Acquisition

|

Piling of attenuation
profiles as a function of
tube angle:

Sinogram

I

9|8ue aqny Aes-x

Attenuation profile
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Acquisition

 Mathematical transformation of an image
to a sinogram = Radon transform

o [
transform |
' l -‘

Image :
Sinogram
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Reconstruction

Starting
from this
acquisition

... let’'s try
do perform

a diagnosis.
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Reconstruction

 |In CT, we acquire the sinogram
=» Inverse problem

e To reconstruct the image from the sinogram

— Inverse Radon transform

Inverse
Radon
transform

Sinogram
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Reconstruction

Filtered back-
projection (FBP)

Sinogram

0.00

Original

1.57

3.14
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Back-projection

Basic principle of back-projection

oo,
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FBP

Each line in the sinogram is an attenation profile at a
given tube angle

Only one attenuation
profile used

0.00

Original

1.57

3.14
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FBP

Original

Sinogram
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FBP

Original

Sinogram

60° used
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FBP

Original
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Sinogram
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FBP

Sinogram

Original 180° used
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Reconstruction

Simple back-projection (BP): Problem

Sinogram

Image
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Reconstruction

Filtered back-projection:

- Selection of relevant spatial frequencies

05

Sinogram Filtered sinogram Image
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Reconstruction: Filter

Smooth

Mag 1.0x%

|, _1 iy 7- 1.-. 0
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F DFOY: 30.0% 30 0cm

V.300 L:40 P DFOY: 30.0 % 30 0cm
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lterative reconstruction (15t generation)

p )
Adaptive '

| oriterative |
denoiser
/

«Sinogram denoising

sImage reconstructed with modified sinogram
*Possibility of reducing patient doise due to lower
noise levels for identical doses
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lterative reconstruction (15t generation)

FBP ASIR (40%)
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Iterative reconstruction (2"d generation)

e Optimisation problem
— Back-and forth between sinogram space and image space
e CT optics are modeled
* Noise statistics are modeled

P,
x—ravg; ree measured projections

Final solution

detector 0K?
Compare

Py

3 x
db
No Ed xd,b+ W d Eb' )"b'{nj xd',b'

|

multiplicative factor

1. {n) 1
Eb }"b xd,b

lb{n'l:j' {n+1)
Forward projection b

%, A x A, 2,0

bbb d,b . )
Estimate projections Starting estimate
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lterative reconstruction (2"d generation)
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Hounsfield scale;: HU = 1000 x

M — Hwater

MHwater — Mair

Cortical
bonne

NCT A
1000 -
800 — 80~

B Liver
600 — 70+

] Blood
400 Spongious 60
200 bone oo 250 50 Pancreas

Water .4 50 Kidne
0 - 4 Fat o [ 407 !

— I:I_‘IG[]
-200 — 30-
-400 — 204

7 Lungs eo
-600 : 104
-800 — 0.

N Air
-10004 == 990
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(% center + % -< periphery >)

CTDI,,; = 100 mm -

collimation [mm|
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Dose-length product

<——> L: Scan length

DLP: CTDI,, x L

vol

32



From DLP to effective dose
G DLP x Conversion factor =
| [MGy cm] [MSv / (MGy cm)]
_ i x 0.0019
DLP, = CTDI,y X L, i (head)
i x 0.0052
i (neck)
_ | x 0.0146
L, DLP,=CTDIl, XL, i (chest)
i x 0.0153
! (abdomen)

_ 5 x 0.0129

Ly DLPy=CTDlgxLs (pelvis)

Effective dose
[MSv]

E,
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Dose Descriptors in CT
CTDI,,, (mGy)

\\
— ~ represents local absorbed dose X
( — /—’_

— Good for protocol comparison )

L

DLP = CTDI,, x L (mGy.cm)

«— L —
— represents total absorbed dose q X R
( _ /"

J)

— ~ represents relative risk

Effective dose (mSv)

— Sensitivity of organs accounted for

— k values region specific

£
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CTDI is not patient dose

* Patients are not cylinders of Perspex
* The integration length (Z scan length) is not 100 mm

 Patients come in different sizes

CT Dose Index and Patient Dose:
They Are Not the Same Thing'

35
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Radiography MR imaging

« Limitations of X-ray imaging
— Mainly anatomical imaging
— Limited soft tissue contrast

v T @gﬁ d

37




Origin of the signal in MRI: Nucleus

N

Mass: spin (S) Charges: magnetic momentum (I.l)

S

= Rotation of a mass leads to a = Rotation of charges leads to a
Kinetic momentum magnetic momentum (small magnet)

= Quantified spin
= Proton, neutron and electron have a
spin equal to 1/2

n=y- S Y : Gyromagnetic ratio

MRI : imaging of hydrogen nuclei = proton imaging

38 H
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In the absence of a magnetic field B, the
microscopic magnetisations p are oriented
randomly

Resulting
macroscopic
magnetisation is
Zero.
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Effect of a static magnetic field on a magnetic momentum

Splitting of energy levels

T
2222/ ¢
B, =0 /
B, >0
Same energy level —1nhyB,
B

Number of levels available :
21+ 1

r'y

AE-u B,

At equilibrium:
NB/No = exp — AE/KT

fB,=15T
NpB/Ne. =0.001 %
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Magnetic field B, induces a macroscopic
magnetisation M

patient main axis (head-foot)

3
H‘g NS M is parallel to B,~ along the
W
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In the presence of a magnetic field B, the
microscopic magnetisations p precess (turn)
around B
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Spinning top in Magnetic moment in a
gravitation field magnetic field (proton)

- e

7

= The spinning frequency is proportional to the static
magnetic field B, (Larmor frequency v)

= Forprotons:v=4258MHz@ 1T
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Magnetic resonance experiment

Aradiofrequency corresponds
to a rotating magnetic field B/

Resonance condition :
B, frequency equals
the Larmor frequency

h

Receiver
Coil
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Apparatus

B,: Very high magnetic field (tesla, T)
— Constant in space and time
— Creation of the signal

Gradient coils (G,, G, G,)

B,: Excitation magnetic field (mT)
— Electromagnetic wave (radiofrequency, rf)
— Magnetic field varying across time
— Perturbation of the signal

G, .- magnetic field gradients (mT.m-)

— Magnetic field that varies in a given
direction in space

— Adds up for several seconds to B,
— Allows for signal localisation

Excitation antenna (B,)
Superconducting magnet (B,) Signal recuperation antenna

46



Phase 1

* The patient is placed in a static magnetic field (B,)

B, creates M which projection along z is M,

@Vald
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Phase 2

* The direction of M, is modified by applying a radio frequency,
B,(t), at Larmor frequency (42 MHz/T)

* M, rotates around B, and B,

B,
M,
G N —
® B(t)

Use of an excitation antenna: tilt of M, in the transverse
plane x,y. M, > M,,

48 (H
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Phase 3

= Foratiltof 90° M, is now equal to 0

M, =0 3
M, =M

x -

The magnetization vector is now In the transverse plane
and rotates around B, (B, is switched off). One can detect
M,, in that plane with a reception antenna.
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Phase 4

= Magnetization returns to its equilibrium position
-> energy relaxation

The amplitude of M, decreases as a function of time

The amplitude of M, increases as a function of time

@Vald
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MRI sequences

 To obtain an image

_M is flipped multiple times in the transverse plane and
the signal is read out
« Typically 256 times for a 256x256 pixel image
MR seqguences are usually long (several minutes)

— Time interval between RF excitations (flipping of M in
the transvers plane) : TR
* Repetition time
— Time interval between the flipping of M in the
transverse plane and signal readout: TE
« Echo time (time between RF excitation and middle of echo)
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Longitudinal relaxation T,

The return of the longitudinal magnetisation M, (anngB_Q)) to equilibrium occurs
exponentially (T, = 63% of regrowth).

The spins dissipate their energy (from the RF excitation) to their environment.
Spin-lattice relaxation or T,

temps

T1

C{;“gﬁ d
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T, effect on the image

Regrowth of M,

Solids and liquids: very slow = weak signal
Soft tissue: mean - mean signal

Fat: fast = high signal
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Transverse relaxation (T,)

Mechanism simultaneous to T, and much faster
Dephasing of individual spins

Diminution of M, (signal)

No energy exchange with the lattice (medium): spin-spin relaxation or T,
Measures the magnetic homogeneity of the environment

4 Just after the 90°
‘ - pulse, all the
magnetisation
IS in the transverse
plane M,,

- 1 %"g[‘j d
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T2 effect on the Image

Decay of M,

Solids: very fast - weak signal

Soft tissue: mean - mean signal e W |
Liquids: slow = high signal ¢ « D
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Temps de relaxation T, et T,

e |ndicative values of tissue relaxation times
(usually T, >>T,)

Tissue TT@1,5T T2
(msec) (msec)
Fat 260 80
Liver 500 40
Muscle 870 45
White matter 780 90
Grey matter 900 100

Cerebrospinal lig. 2’400 160
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Classical contrasts in MRI

* Proton density (number of H atoms in water and fat
molecules) per unit volume
— No T, relaxation effect

* RF pulses are far from one another
— Long TR
— No T, relaxation effect
 The signal is recorded as fast as possible after the RF pulse
— Short TE

e T, contrast (proton density modified by T,)

e Short TR
e Short TE

e T, contrast (proton density modified by T,)
e Long TR
e Long TE
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Localisation of the signal

« Slice selection: activation of a gradient coill

z
A
AL T F 77—
/ Field i =7 \
F trength | i—1—1—1— i —H |
I;' streng : &Hk{) — ; H |
i —m me———— — x
‘p o — ~ e \}.
y_; ""."}/x

Fleid gr'idmnl in x direction

Signal 0
strength
Signal g

Strength

y. : .V.V.V.V.V.V.V.V.

64 . Signal
MHz Signal Frequency frequency
B, constant: only one B, + gradient: Larmor frequency
Larmor frequency depends on the position
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Particular applications of MRI

Cardiac MRI

SS



Applications in oncology

: .f-a/
ot e .\
ik [l T, image (Gd enhanced)
nw \ (mammary carcinoma)
y Y
J'J
T, image

(bone tumour) _ :
T, Image T, Image

(cyst) (cerebral metastasis)

60



Functional imaging (fMRI)

Different
possible
stimuli

Functional imaging of a blind person
reading a text written in Braille.
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MR spectroscopy (MRS)

4.0 3.0 2.0 1.0
Chemical shift (ppm)
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Reference

* Excellent course on youtube
— Paul Callaghan
— 10 videos between 6 and 10 minutes

https://www.youtube.com/user/magritek/videos
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https://www.youtube.com/user/magritek/videos
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Thank you for your attention

Nick Ryckx

SSRMP medical physicist (radiodiagnostics)

CHUV - Institute of radiation physics
Rue du Grand-Pré 1
CH - 1007 Lausanne
Nick.Ryckx@chuv.ch
+41 21 314 32 16
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