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Presentation
• Nick Ryckx, PhD
• SSRMP medical physicist

– Institute of radiation physics, CHUV
– Specialty in radiodiagnostics

• Computed tomography (CT)
• Radioscopy
• Nuclear medicine
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Conventional X-ray imaging
• All anatomical

structures projected
on a single plane

• Impossible to 
calculate linear
attenuation
coefficients (µt) of all 
body tissues
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• Generator

• X-ray tube

• Collimation

• Detector
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Apparatus



X-ray tube
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2-step procedure

• Step 1: acquisition of 
X-ray attenuation
profiles under different
angles angles 
(projections)

• Step 2: image 
reconstruction
starting from the 
attenuation profiles
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Table motion during a 360° rotation
X-ray beam width

Pitch = 

Sequential or helical acquisition
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Sequential (step-and-shoot)



Acquisition

Attenuation profile
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Acquisition
Piling of attenuation
profiles as a function of 
tube angle:
Sinogram

X-ray tube angle

Attenuation profile
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Acquisition

• Mathematical transformation of an image 
to a sinogram = Radon transform
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Radon 
transform

Image
Sinogram



Reconstruction
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Starting
from this
acquisition
…

… let’s try
do perform
a diagnosis.



Reconstruction
• In CT, we acquire the sinogram

 Inverse problem
• To reconstruct the image from the sinogram

– Inverse Radon transform
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Reconstruction
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Filtered back-
projection (FBP)

Original

Sinogram



Back-projection
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Basic principle of back-projection



FBP
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Original

Sinogram

Each line in the sinogram is an attenation profile at a 
given tube angle

Only one attenuation 
profile used



FBP
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Original

Sinogram

5° used



FBP
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Original

Sinogram

60° used



FBP

20

Original

Sinogram

130° used



FBP
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Original

Sinogram

180° used



Simple back-projection (BP): Problem

Sinogram Image

Reconstruction
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Filtered back-projection:

- Selection of relevant spatial frequencies

Sinogram ImageFiltered sinogram

Reconstruction
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Reconstruction: Filter
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BoneSmooth



Iterative reconstruction (1st generation)

•
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•Sinogram denoising
•Image reconstructed with modified sinogram
•Possibility of reducing patient doise due to lower
noise levels for identical doses



Iterative reconstruction (1st generation)
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FBP ASIR (40%)



• Optimisation problem
– Back-and forth between sinogram space and image space

• CT optics are modeled
• Noise statistics are modeled
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Iterative reconstruction (2nd generation)
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FBP MBIR

Iterative reconstruction (2nd generation)
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Hounsfield scale:
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DLP: CTDIvol x L

Dose-length product
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L: Scan length



From DLP to effective dose
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DLP1 = CTDIvol x L1

L1

DLP2 = CTDIvol x L2L2

DLP3 = CTDIvol x L3L3

Conversion factor =
[mSv / (mGy cm)]

E = Σ Ei

x 0.0019
(head) = E1

x 0.0052
(neck)

x 0.0146
(chest)

x 0.0153
(abdomen)

x 0.0129
(pelvis)

= E2

= E3

DLP x
[mGy cm]

Effective dose
[mSv]
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• Limitations of X-ray imaging
– Mainly anatomical imaging
– Limited soft tissue contrast

Radiography MR imaging
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Origin of the signal in MRI: Nucleus

Mass: spin

 Rotation of a mass leads to a 
kinetic momentum
 Quantified spin
 Proton, neutron and electron have a 

spin equal to 1/2

 Rotation of charges leads to a 
magnetic momentum (small magnet)

Charges: magnetic momentum (µ)

µ=γ⋅s

(s)

γ : Gyromagnetic ratio

MRI : imaging of hydrogen nuclei proton imaging
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In the absence of a magnetic field Bo, the 
microscopic magnetisations µ are oriented

randomly

Resulting
macroscopic

magnetisation is
zero.
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Effect of a static magnetic field on a magnetic momentum

Splitting of energy levels
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Magnetic field Bo induces a macroscopic
magnetisation M

M is parallel to Bo  along the 
patient main axis (head-foot)
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In the presence of a magnetic field B, the 
microscopic magnetisations µ precess (turn) 

around B
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 The spinning frequency is proportional to the static 
magnetic field Bo (Larmor frequency ν)

 For protons: ν = 42.58 MHz @ 1 T

ν = ⋅Bo
2π
γ

Spinning top in 
gravitation field

Magnetic moment in a 
magnetic field (proton)



Magnetic resonance experiment
A radiofrequency corresponds 
to a rotating magnetic field B1

Resonance condition : 
B1 frequency equals 
the Larmor frequency

M rotates around 
B0 and B1
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Apparatus
• Bo: Very high magnetic field (tesla, T)

– Constant in space and time
– Creation of the signal

• B1: Excitation magnetic field (mT)
– Electromagnetic wave (radiofrequency, rf)
– Magnetic field varying across time
– Perturbation of the signal

• Gx,y,z: magnetic field gradients (mT.m-1)
– Magnetic field that varies in a given

direction in space
– Adds up for several seconds to Bo
– Allows for signal localisation

Superconducting magnet (Bo)
Excitation antenna (B1)

Signal recuperation antenna

Gradient coils (Gx, Gy, Gz)
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Phase 1
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Phase 2
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Phase 3



50

Phase 4



MRI sequences
• To obtain an image

– M is flipped multiple times in the transverse plane and 
the signal is read out

• Typically 256 times for a 256x256 pixel image
• MR sequences are usually long (several minutes)

– Time interval between RF excitations (flipping of M in 
the transvers plane) : TR

• Repetition time

– Time interval between the flipping of M in the 
transverse plane and signal readout: TE

• Echo time (time between RF excitation and middle of echo)
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The return of the longitudinal magnetisation Mz (along B0) to equilibrium occurs
exponentially (T1 = 63% of regrowth).
The spins dissipate their energy (from the RF excitation) to their environment.
Spin-lattice relaxation or T1

Longitudinal relaxation T1
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T1 effect on the image

Regrowth of Mz:
Solids and liquids: very slow  weak signal
Soft tissue: mean mean signal
Fat: fast high signal
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Transverse relaxation (T2)

Mechanism simultaneous to T1 and much faster
Dephasing of individual spins

Diminution of Mxy (signal)
No energy exchange with the lattice (medium): spin-spin relaxation or T2

Measures the magnetic homogeneity of the environment

z
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oB

Just after the 90°
pulse, all the 

magnetisation
is in the transverse 

plane Mxy
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T2 effect on the image

Decay of Mxy:
Solids: very fast weak signal
Soft tissue: mean mean signal
Liquids: slow  high signal
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Temps de relaxation T1 et T2

• Indicative values of tissue relaxation times
(usually T1 >> T2)
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Classical contrasts in MRI
• Proton density (number of H atoms in water and fat 

molecules) per unit volume
– No T1 relaxation effect

• RF pulses are far from one another
– Long TR

– No T2 relaxation effect
• The signal is recorded as fast as possible after the RF pulse

– Short TE

• T1 contrast (proton density modified by T1)
• Short TR
• Short TE

• T2 contrast (proton density modified by T2)
• Long TR
• Long TE
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Localisation of the signal
• Slice selection: activation of a gradient coil

Bo constant: only one 
Larmor frequency

Bo + gradient: Larmor frequency
depends on the position
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Particular applications of MRI

Cardiac MRI
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T2 image
(bone tumour)

T2 image
(cyst)

T1 image
(cerebral metastasis)

T1 image (Gd enhanced)
(mammary carcinoma)

Applications in oncology
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Functional imaging (fMRI)

Functional imaging of a blind person
reading a text written in Braille.

Different
possible 
stimuli
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MR spectroscopy (MRS)

62



Reference
• Excellent course on youtube

– Paul Callaghan
– 10 videos between 6 and 10 minutes

https://www.youtube.com/user/magritek/videos
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Thank you for your attention

Nick Ryckx
SSRMP medical physicist (radiodiagnostics)

CHUV – Institute of radiation physics
Rue du Grand-Pré 1
CH – 1007 Lausanne
Nick.Ryckx@chuv.ch

+41 21 314 32 16

mailto:Nick.Ryckx@chuv.ch
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