Medical Imaging techniques (SPECT and PET)

S. Gnesin

Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland

MEDICIS-Promed Leman School, Lausanne, CHUV, 12 March 2018

UNIL | Université de Lausanne

Rectilinear scanner 1951 Simple scintillator counter

I-131 Thyroid Planar imaging

Ink intensity is proportional To measured photon count-rate

H. Anger 1958 First Gamma Camera Tc-99m Pertechnetate Brain scan of a patient with a glioma

Which devices

- Imaging devices
- Gamma camera
- > SPECT/CT
- PET/CT (PET/MRI)

Gamma Camera

Gamma camera: main components

- Emission imaging is based on scintillation detection
- Line of sight are defined by collimation (W or Pb collimator)

Gamma camera: Problems in event localization

- A) Valid event (useful for correct localization on the imaged region)
- B) Scatter on the crystal
- C) Scatter on the patient
- D) Septal penetration

Incorrect source localization

Intrinsic spatial resolution (detector)

 \rightarrow (4mm)

Impinging gamma energy

Crystal thickness

Collimator resolution (parallel-hole)

~10 mm

Gamma camera Sensitivity

- Ω : solid angle subtended by the collimator hole from the source
- d : collimator hole diameter
- I: collimator length (septa length)

Detection efficiency			
(crystal)			

Collimator Type	Recommended Max. Energy (keV)	Efficiency, g	Resolution $R_{ m coll}$ (FWHM at 10 cm)
Low-energy, high-resolution	150	$1.84 imes 10^{-4}$	7.4 mm
Low-energy, general-purpose	150	$2.68 imes10^{-4}$	9.1 mm
Low-energy, high-sensitivity	150	$5.74 imes10^{-4}$	13.2 mm
Medium-energy, high-sensitivity	400	$1.72 imes 10^{-4}$	13.4 mm

Tomographic reconstruction

Bases of tomography reconstruction in nuclear medicine

Projections in a simple 1-D detector case

Signal proportional to the summed activity along the line of response (assumption of no attenuation and scatter)

Head rotation around the imaged object

Many projections at different angles are obtained

1-D Projection data are arranged in a 2D (r,ϕ) **SINOGRAM representation**

Each row (ϕ) in the sinogram displays the intensity profile measured in the corresponding projection

Animations from: Floris HP van Velden, PhD, EANM Milan 2012

- Detection/Localisation
- Contrast
- Quantification

SPECT/CT

Signal intensity in SPECT voxels is proportional to the amount of activity contained

But absolute quantification (Bq/mL) is very hard to achieve

>Line of response are not straight cylinders but are diverging cones

Tissue attenuation results in depleted signal from deeper location in patient

➤Scattering in patient, detector and collimator results in event mislocalisaton

Transmission $T = e^{-\mu \chi}$ for 140-keV γ rays in water, μ =0.155 cm⁻¹

>An exact **detector collimator response** is needed (septal penetration, PSF resolution recovery)

CT based attenuation correction in SPECT

CT-AC is standard in modern hybrid SPECT/CT devices

Detector array

Effective energy of the beam can be defined

120 kVp \rightarrow 75 keV

Appropriate $\mu(x,y,E\gamma)$ map need:

Energy scaling the attenuation coeff. from effective beam energy to the given radionuclide energy

CT based attenuation correction in SPECT

CT map is in Hounsfield units obtained from a borad-energy Spectrum

Segmentation on CT ≻Air Attenuation map $\mu(x,y,E\gamma)$ ≻Bone ≻Soft tissues

Continuous attenuation map $\mu(x,y,E\gamma)$ from CT

СТ

SPECT/CT fusion

AC-corrected SPECT Non corrected

➤Scattering in patient, detector and collimator results in event mislocalisaton

Scatter fraction in the selected energy window in unfavorable condition cab be up to 40%

Scatter correction by Chang corrections → smaller attenuation coefficient Only works in regions of uniform activity distribution and attenuation

Scatter correction by measured scatter component subtraction in projections

Scatter correction by energy discrimination in PHA

Scatter correction in SPECT PHA based energy discrimination

Scatter correction must be performed before Attenuation correction to avoid amplification of scatter contribution

Attenuation and Scatter correction in SPECT Iterative reconstruction

Attenuating map data can be integrated into the Image Matrix (M)

To account for the probability of scatter radiation in the source region (x,y) to produce a signal into a given detector element (p_i)

Collimator/detector response can also be integrated in M

Monte Carlo simulations (gold standard)Measured data

The way towards Quantitatively accurate SPECT imaging

PET/CT

Basic principle of PET

Radionuclides used in PET : ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ⁶⁸Ga, ⁸²Rb

PET detector design

Detector elements (scintillators)

Energy spectra in β^+ decay

β + emission: Energy and range

Coincidence detection: Electronic collimation

Coincidence are events couple of events

occurring at the "same time" (~ns)

having the right energy (~511 keV each)

Coincidence detection

Only photons detected in coincidence are considered to build the image

Spatial localization of annihilation events

2-511keV photon in coincidence \rightarrow 1 Line (tube) Of Response (LOR)

- Goal
 - Recover the exact position of the annihilation event
- Problem
 - We have not information about the place along the LOR where the annihilation happened

Direct localization using the Time of Flight (TOF) information

Measured detection time in D1 and D2

$$T_1 = \frac{D - x}{c} \qquad \qquad T_2 = \frac{x}{c}$$

$$\Delta T = T_2 - T_1 = \frac{x}{c} - \frac{D - x}{c} = \frac{2x - D}{c}$$

Uncertainty on time estimation \rightarrow Error in annihilation position estimation

$$\delta T = \frac{\delta x}{c}$$

Direct localization using the Time of Flight (TOF) information

- Source 1
 - tγ₁ = D₁/c → 1.4 ns
- Source 2

−
$$t\gamma_2 = D_2/c \rightarrow 1.2$$
 ns

• Difference in time of flight $\Delta t = 0.2$ ns = 200 ps

$$\Delta x = \frac{c\Delta t}{2} \Leftrightarrow \Delta t = \frac{2\Delta x}{c}$$

Improved pelvic nodule visualization with Time-of-Flight

TOF

Body attenuation greatly reduces counts. As size increases, counts are reduced exponentially. ToF gain is greater for large patients as it partially compensates for the lower quality of large patients

Gain based on: Sensitivity_{gain} $\propto 2 \times \frac{D(cm)}{\Delta t(ns) \times c}$

Dual modality PET-CT

 Goal : improve activity localization and implement attenuation correction (autoregistration of anatomic CT and functional PET)

X-ray tube X-ray detector

Modeling of the PSF, improves actual positioning of the LoRs

 $\mathsf{PSF} \rightarrow \mathsf{uniform}$ space resolution across the FOV

Spatial resolution

$$R_{t} = K_{r} \cdot \sqrt{R_{i}^{2} + R_{p}^{2} + R_{a}^{2} + R_{1}^{2}}$$

- R_i is related to the detector width (w)
 - from w/2 (center) to w (detector), 2 4 mm
- R_p is related to the positron range
- 0.2 mm for ¹⁸F and 2.6 mm for ⁸²Rb
- R_a is related to the γ non-colinearity
 - ± 0.25° deviation from 180°
 - 1.8 mm for a 80-cm PET scanners
- R₁ is related to the localization of detector
 - (use of block detectors instead of single detectors)
 - 2.2 mm for BGO (less for LSO)
- K_r is a factor related to the reconstruction technique (1.2 to 1.5)
- R_t at the center of the FOV : 5 mm for ¹⁸F

Detection efficiency

$$S = \frac{A}{4\pi r^2} \cdot \epsilon^2 [cps/MBq]$$

- A = detector area seen by a point source to be imaged
- $\varepsilon = 1 \exp(-\mu x)$ detector's efficiency
- μ = linear attenuation coefficient of 511 kev photons in the detector
- x= thickness of the detector
- r = radius of the detector ring
- S = 0.2 0.5 % for 2D PET and 1-10% for 3D PET
- (S = 0.01-0.03% for SPECT)
- Manufacturer provides volume sensitivity S_{vol} [cps/Bq/ml]

Coincidence event type in PET

Coincidence event type in PET

• True coincidence

- Correct localization long the LOR
- Useful for image reconstruction

Scatter coincidence (Compton)

- Mislocalization
- Contrast reduction
- Quantitative bias

Random coincidence

- Mislocalization
- $\$ Important component \rightarrow count rate saturation
- Quantitative bias

Corrections for Quantitative Studies : All PET is (almost) Quantitative !

Raw Sinogram Data (Trues + Scatters + Randoms)

Remove Randoms

Normalize Detector Responses

Correct for Deadtime

Correct for Scatter

It's not exactly like this, and it's not necessarily as linear as this!

Correct for Attenuation

T Sinogram Ready for Reconstruction

PVE correction

Recovery coefficient (RC)

Specific Uptake Value (SUV) concept

SUV = semi-quantitative index of the ¹⁸FDG accumulation \Rightarrow makes possible the comparisons between exams

SUV is used as an index to determine if a hotspot is significant
Its use depends on :

Time between injection and acquisition, patient's blood sugar level, patients's weight, quantification quality (attenuation correction, ...), partial volume effects, ...

Recent developments

Semi conductor gamma camera Cardiac Gamma camera

В

D

New collimators and acquisition geometry

Acquisition geometry of the D-SPECT systemwith 9 detector blocks (A). Photograph of the camera (B), 1 detector column (C), and 1 CZT detector element (D). (SpectrumDynamics)

New Cardiac Cameras: Single-Photon Emission CT and PET, Piotr J. Slomka et al. Semin NuclMed44:232-251 2014

Acquisition geometry of the GE NM 530c multipinhole system (A). Photograph of the camera (B), multipinhole collimator (C)

New Cardiac Cameras: Single-Photon Emission CT and PET, Piotr J. Slomka et al. Semin NuclMed44:232-251 2014

The **CZT-SPECT-camera** (pixelated detector of a size of 2.46 mm/pixel and energy resolution of 6.3% compared to an energy resolution of 9.8% for the Nal-camera

Better energy resolution → reduce scatter contribution Higher spatial resolution ~ 3mm Higher count rate achievable Higher sensitivity →Shorter acq. time and/or low administered activity (patient dose reduction)

Dverlay of ^{99m} Tc and ¹²³I spectra, showing greater crosstalk between the two beaks for the NaI detector with its poorer energy resolution and wider energy window.

Semiconductor based (SiPM) PET

Detector modules developed to operate in high magnetic field (PET/MRI)

Source: GE

SiPM

Semiconductor SiPM

Source: Philips

Conventional vs. SiPM PET

Table – Comparison of the Philips Ingenuity TF, GE Discovery 710, Biograph mCT Flow and the new Philips digital PET/CT Vereos.

Model Product Name	Ingenuity TF	Discovery 710	Biograph mCT Flow	Vereos
Patient port [cm]	70 OpenView	70	78	70
Patient scan range [cm]	190	200	195	190
Maximum patient weight [kg (lb)]	195 (430)	226 (500)	226 (500)	195 (430)
Acquisition modes	3D S&S	3D S&S	3D S&S, continuous	3D S&S
Number of image planes	45 or 90	47	109	72
Plane spacing [mm]	2 or 4	3.27	2	1, 2, or 4
Crystal size [mm]	$4 \times 4 \times 22$	4.2 × 6.3 × 25	$4 \times 4 \times 20$	$4 \times 4 \times 22$
Number of crystals	28,336	13,824	32,448	23,040
Number of PMTs	420	256	768	23,040 SiPMs
Physical axial FOV [cm]	18	15.7	21.8	16.3
Detector material	LYSO	LYSO	LSO	LYSO
System sensitivity 3D, [%]	0.74	0.75	0.95	>1.0
Trans axial resolution @ 1 cm [mm] *	4.7	4.9	4.4	4.0
Trans axial resolution @ 10 cm [mm]	5.2	5.5	4.9	4.5
Axial resolution @ 1 cm [mm]*	4.7	5.6	4.5	4.0
Axial resolution @ 10 cm [mm]*	5.2	6.3	5.9	4.5
Peak NECR [kcps]	120 @19 kBq/ml	130 @29.5 kBq/ml	175 @28 kBq/ml	400 @30 kBq/ml
Time-of-flight resolution [picoseconds]	591	544	540	307
Time-of-flight localization [cm]	8.9	8.2	8.1	4.6
Coincidence window [nanoseconds]	4.5	4.9	4.1	1.5

The sensitivity, NECR (noise equivalent count rate), coincidence window and TOF resolution are higher for the digital PET/CT digital PET/CT. *Abbreviations:* FOV, field-of-view; PMT, photomultiplier tubes; NECR, noise equivalent count rate; kcps, kilocounts per second; kBq/ml, kiloBecquerel/milliliter; S&S, step and shoot.

* NEMA 2001.

Advances in SPECT and PET Hardware, Piotr J. Slomka et al.

PET / MRI

Source: Siemens