Small Animal Imaging Techniques

David Viertl, Francesco Cicone, Thibaut Denoël, Judith Delage, Niklaus Schaefer and John O. Prior

CHUV, Lausanne University Hospital, Switzerland

MEDICIS PROMED Leman School 12.03.2018

UNIL | Université de Lausanne

Faculté de biologie et de médecine

Overview

- Small animal imaging
- Particularities of small animal imaging
- Examples of application
- Image processing & analysis

Small animal imaging

- Non invasive, longitudinal study
- (semi-)quantitative, spatial and temporal information
- Embrace all physiological factors
- Systemic disease

Small animal imaging

- Fundamental research
- Drug development
- Translational research
- Bench to bedside \leftrightarrow bedside to bench

Physiology of small animal

	Mouse	Human
Blood Volume	1.7 ml	5 L
Resp. frequency [per min]	60-230	12-20
Heart Frequency [per min]	300-800	60-90
Anaesthesia	Yes	No
Hypothermia	Yes	No

Physiology of small animal

Influence of anesthetic drug on cardiac ¹⁸F-FDG uptake.

Influence of length of anesthesia on cardiac uptake.

Small Animal Imaging techniques

Bioluminescence

- Convenient
- ✓ nM sensitivity
- ✗ 5 cm imaging depth
- × 1-5 mm resolution

Ultrasound

- ✓ 50 µm resolution
- × 3 cm imaging depth
- Operator dependent

PET/CT

- ✓ No limit of depth
- ✓ pM sensitivity
- ✓ quantitative
- 1-2 mm resolution
- Radioactivity

Fluorescence

- Convenient
- ✓ nM sensitivity
- 1 cm imaging depth
- × 2-3 mm resolution

MRI

- ✓ 10-100 µm resolution
- ✓ Soft tissue contrast
- × Expensive

SPECT/CT

- No limit of depth
- ✓ pM sensitivity
- ✗ 0,3-2 mm resolution
 - Radioactivity

Animal Management System

- Temperature regulated environment for mice & rats
- ✓ Gas ports for use with anesthesia
- ✓ Live color webcam for monitoring of animals
- ✓ ECG/respiratory gating
- ✓ 800 Kg
- ✓ Auto shielded
- ✓ Turn-key system

PET modality

- ✓ Exclusive, proprietary PET detectors
 - ✓ Single LYSO crystal
 ✓ 12x12 SiPM
- High spatial resolution over all the FOV
- ✓ Sensitivity 4.5 %
- ✓ Average energy resolution 17 %
- ✓ 8 detectors per ring, 3 rings
- ✓ Large FOV 148 mm x 80 mm
- ✓ Reconstruction MLEM

SPECT modality

- Dual head camera
- CsI(Na) single crystals
- ✓ Sensitivity 1800 CPS/Mbq
- ✓ Energy resolution: 0.18
- ✓ Energy range 30-400 keV
- ✓ FOV 25 120 mm
- ✓ Spatial resolution 0.5 mm
- ✓ Single and multi-pinhole collimators

CT system

- ✓ Spatial resolution 90 µm
- ✓ X-ray source 10-50 kVp with 35 um X-ray spot size
- ✓ Two-dimensional 12 cm x 12 cm, 2400 x 2400 pixel detector
- ✓ FOV 7 cm
- ✓ Rapid acquisition and reconstruction
- ✓ Safe fully shielded cabinet X-ray system with interlocks

Radiotracer

Theranostic approach

« Diagnostic » radio-isotopes Tb-152, Ga-68, Lu-177, ...

« Therapeutic » radio-isotopes Tb-149, Y-90, Lu-177, ...

1

Selection of currently investigated targeting biomolecules :

- FEPPA
- Neurotensin derivatives
- Bombesin derivatives
- TEM-1
- 3BNC117
- Others in development...

- \rightarrow small molecule
- \rightarrow peptide
- \rightarrow peptide
- \rightarrow antibody
- \rightarrow antibody

Small animal radionuclide imaging workflow

Small animal radionuclide imaging workflow

PET/CT acquisitions of ⁶⁸Ga bombesin and neurotensin analogs in human prostate cancer xenografts

⁶⁸Ga-DOTA-NT20.3-Ile Neurotensin

Female SCID grafted with PC3 Injection of 2.5 MBq ⁶⁸Ga -NODAGA-MJ9-Bombesin and 3.7 MBq ⁶⁸Ga -DOTA-NT20.3-IIe Acquisition 180 minutes post-injection

First PET images of ¹⁵²Tb-CHX-A"-DTPA-Full IgG

PET/CT acquisition over 48h post-injection of 7 Mbq of ¹⁵²Tb-CHX-A"-DTPA-Full IgG in mice bearing RD-ES Ewing Sarcoma compared to ¹⁸F-FDG and ⁶⁸Ga-NODAGA-RGD

First SPECT imaging of ¹¹¹In-CHX-A"-DTPA-ScFv78Fc

 111 In-CHX-A"-DTPA-ScFv78Fc in mouse bearing A673 Ewing sarcoma tumor 1.88 MBq / 33 μg 20 h post injection FOV dual head SPECT 360°, 60 projections, 45 sec/proj CT 45 keV 200 μA

PET/CT mice acquisitions of orthotopic glioblastoma and spontaneous colon cancer

Representative PET/CT acquisition 90-min post-injection of 8.0 ± 1.6 MBg ⁶⁸Ga-MJ9 in mice bearing MGH4 primary glioblastoma 90 post injection of 10'000 cells. Tumor-to-normal brain ratio was 2.4 ± 0.8 (n=3)

Representative PET/CT acquisition 60 min post-injection of 7 MBq ¹⁸F-FDG in a mouse with spontaneous colon cancer

Pharmacokinetics PET acquisition of 18F-FDG

И К0

Bladder
 Brain

Brain mapping in LPS induced neuroinflamation detected by 18F-FEPPA

Quantification of adipose tissue in rats with in intrauterine deprivation by computed tomography

VAT evolution through time (top) and body composition at 12 months of age (bittors) in times (with an otherwise (right)). As 6 months of age, both male and female SUGR groups had the lowest adjoines, especially VAT, percentage compared to other groups. At 12 months of age, the 3 experimental male and female groups had more three sectors are set of the sectors and the set of the sectors. CT images of rats and semi automatic segmentation lean mass, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have shown that as age increases rats born with intrauterine deprivation gain more VAT than control which may predispose them to cardio metabolic disorders thereafter

PET Gated Heart Study in Mouse

Twenty minutes PET cardiac gated acquisition of a mouse injected iv with 15 Mbq ¹⁸F-FDG 45 minutes post-injection

PET Heart Study in Mouse Image Processing

uptake in control group than treated groups

PET Gated Heart Study in Mouse Image Processing

Automatic volume rendering → Statistical analysis 0.8 SHAM ection Fraction Field Fraction Field Fraction CAF 0 0.2 0.6 0 04 Defect Ratio

Conclusion

- State of the art imaging devices taking advantage of the latest technical developments
- Longitudinal study
- Translational tool (bench to bedside ↔ bedside to bench)
- Bring together experts from different fields

Thank you

Collaborators:

David Viertl Francesco Cicone Thibaut Denoël Judith Delage Silvano Gnesin Luca Suter **Basile Keshavjee** Ana Maria Quintela Pousa Marion Curdy Costa Georgantas Niklaus Schaefer John O. Prior

Collaborations:

Georges Coukos Nicolo Riggi Marie-Catherine Vozenin Thierry Pedrazzini Catherine Yzydorczyk Ivan Stamnenkowic Ping-Chi Ho

Sponsors:

- R'Equip SNSF N° 150837
- Swiss Card-Onco Alfred & Annemarie Von Sick Grant
- Horizon 2020: Marie Skłodowska-Curie ITN

FNSNF SWISS NATIONAL SCIENCE FOUNDATION

European Union Funding for Research & Innovation

UNIL | Université de Lausanne

Faculté de biologie et de médecine

