Small Animal Imaging Techniques

David Viertl, Francesco Cicone, Thibaut Denoël, Judith Delage, Niklaus Schaefer and John O. Prior

CHUV, Lausanne University Hospital, Switzerland
MEDICIS PROMED
Leman School 12.03.2018

Overview

- Small animal imaging
- Particularities of small animal imaging
- Examples of application
- Image processing \& analysis

Small animal imaging

- Non invasive, longitudinal study
- (semi-)quantitative, spatial and temporal information
- Embrace all physiological factors
- Systemic disease

Small animal imaging

- Fundamental research
- Drug development
- Translational research
- Bench to bedside \leftrightarrow bedside to bench

Physiology of small animal

	Mouse	Human
Blood Volume	1.7 ml	5 L
Resp. frequency [per min]	$60-230$	$12-20$
Heart Frequency [per min]	$300-800$	$60-90$
Anaesthesia	Yes	No
Hypothermia	Yes	No

Physiology of small animal

Influence of anesthetic drug on cardiac ${ }^{18}$ F-FDG uptake.

Influence of length of anesthesia on cardiac uptake.
Ketamine/xylazine Isoflurane Whole procedure Only acquisition
A

Small Animal Imaging techniques

Bioluminescence
\checkmark Convenient
$\checkmark \mathrm{nM}$ sensitivity
$\times 5 \mathrm{~cm}$ imaging depth
$\times 1-5 \mathrm{~mm}$ resolution

Ultrasound

$\checkmark 50 \mu \mathrm{~m}$ resolution
$\times 3 \mathrm{~cm}$ imaging depth
\times Operator dependent

PET/CT

\checkmark No limit of depth
\checkmark pM sensitivity
\checkmark quantitative
$\times \quad 1-2 \mathrm{~mm}$ resolution
x Radioactivity

MRI

\checkmark 10-100 $\mu \mathrm{m}$ resolution Soft tissue contrast
\times Expensive

SPECT/CT
\checkmark No limit of depth
\checkmark pM sensitivity
$\times \quad 0,3-2 \mathrm{~mm}$ resolution
\times Radioactivity

microPET/SPECT/CT

Animal Management System

\checkmark Temperature regulated environment for mice \& rats
\checkmark Gas ports for use with anesthesia
\checkmark Live color webcam for monitoring of animals
\checkmark ECG/respiratory gating
$\checkmark 800 \mathrm{Kg}$
\checkmark Auto shielded
\checkmark Turn-key system

microPET/SPECT/CT

PET modality

\checkmark Exclusive, proprietary PET detectors
\checkmark Single LYSO crystal
$\checkmark 12 \times 12$ SiPM
\checkmark High spatial resolution over all the FOV
\checkmark Sensitivity 4.5%
\checkmark Average energy resolution 17%
$\checkmark 8$ detectors per ring, 3 rings
\checkmark Large FOV $148 \mathrm{~mm} \times 80 \mathrm{~mm}$
\checkmark Reconstruction MLEM

microPET/SPECT/CT

microPET/SPECT/CT

SPECT modality

\checkmark Dual head camera
$\checkmark \operatorname{CsI}(\mathrm{Na})$ single crystals
\checkmark Sensitivity 1800 CPS/Mbq
\checkmark Energy resolution: 0.18
\checkmark Energy range $30-400 \mathrm{keV}$
\checkmark FOV 25-120 mm
\checkmark Spatial resolution 0.5 mm
\checkmark Single and multi-pinhole collimators

microPET/SPECT/CT

CT system

\checkmark Spatial resolution $90 \mu \mathrm{~m}$
\checkmark X-ray source $10-50 \mathrm{kVp}$ with 35 um X-ray spot size
\checkmark Two-dimensional $12 \mathrm{~cm} \times 12$ $\mathrm{cm}, 2400 \times 2400$ pixel detector
\checkmark FOV 7 cm
\checkmark Rapid acquisition and reconstruction
\checkmark Safe fully shielded cabinet X-ray system with interlocks

Radiotracer

Selection of currently investigated targeting biomolecules:

- FEPPA
- Neurotensin derivatives
- Bombesin derivatives
- TEM-1
- 3BNC117
- Others in development...
\rightarrow small molecule
\rightarrow peptide
\rightarrow peptide
\rightarrow antibody
\rightarrow antibody

Small animal radionuclide imaging workflow

Small animal radionuclide imaging workflow

PET/CT acquisitions of ${ }^{68} \mathrm{Ga}$ bombesin and neurotensin analogs in human prostate cancer xenografts

${ }^{68} \mathrm{Ga}$-DOTA-NT20.3-IIe
Neurotensin

Female SCID grafted with PC3 Injection of $2.5 \mathrm{MBq}{ }^{68} \mathrm{Ga}$-NODAGA-MJ9-Bombesin and 3.7 MBq ${ }^{68} \mathrm{Ga}$ -DOTA-NT20.3-IIe
Acquisition 180 minutes post-injection

First PET images of ${ }^{152} \mathrm{~Tb}-\mathrm{CHX}-\mathrm{A} "-$ DTPA-Full IgG

${ }^{18} \mathrm{FDG} \quad{ }^{68} \mathrm{Ga}-\mathrm{NODAGA}-\mathrm{RGD} \quad{ }^{152} \mathrm{~Tb}-\mathrm{CHX}-\mathrm{A} "-$-DTPA-antiTEM1 Full IgG

PET/CT acquisition over 48h post-injection of 7 Mbq of ${ }^{152} \mathrm{~Tb}-\mathrm{CHX}-\mathrm{A} "-$ DTPA-Full IgG in mice bearing RD-ES Ewing Sarcoma compared to ${ }^{18} \mathrm{~F}$-FDG and ${ }^{68} \mathrm{Ga}-$ NODAGA-RGD

First SPECT imaging of ${ }^{111} \mathrm{In}$-CHX-A"-DTPA-ScFv78Fc

${ }^{111}$ In-CHX-A"-DTPA-ScFv78Fc in mouse bearing A673 Ewing sarcoma tumor $1.88 \mathrm{MBq} / 33 \mu \mathrm{~g} 20 \mathrm{~h}$ post injection
FOV dual head SPECT 360°, 60 projections, 45 sec/proj
CT 45 keV $200 \mu \mathrm{~A}$

PET/CT mice acquisitions of orthotopic glioblastoma and spontaneous colon cancer

Representative PET/CT
acquisition 90-min post-injection of $8.0 \pm 1.6 \mathrm{MBq}$ ${ }^{68} \mathrm{Ga}-\mathrm{MJ9}$ in mice bearing MGH4 primary
glioblastoma 90 post injection of 10 '000 cells.
Tumor-to-normal

Representative PET/CT
acquisition 60 min post-injection of 7 MBq ${ }^{18}$ F-FDG in a mouse with
spontaneous colon cancer
brain ratio was 2.4 $\pm 0.8(\mathrm{n}=3)$

Pharmacokinetics PET acquisition of 18F-FDG

Brain mapping in LPS induced neuroinflamation detected by 18F-FEPPA

Quantification of adipose tissue in rats with in intrauterine deprivation by computed tomography

CT images of rats and semi automatic segmentation lean mass, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have shown that as age increases rats born with intrauterine deprivation gain more VAT than control which may predispose them to cardio metabolic disorders thereafter

PET Gated Heart Study in Mouse

Twenty minutes PET cardiac gated acquisition of a mouse injected iv with $15 \mathrm{Mbq}{ }^{18} \mathrm{~F}-\mathrm{FDG} 45$ minutes post-injection

PET Heart Study in Mouse Image Processing

"Red" higher 18F-FDG uptake in control group than treated groups

PET Gated Heart Study in Mouse Image Processing

Semi automatic orientation and delimitation

Automatic segmentation of VOI

Conclusion

- State of the art imaging devices taking advantage of the latest technical developments
- Longitudinal study
- Translational tool (bench to bedside \leftrightarrow bedside to bench)
- Bring together experts from different fields

Thank you

Collaborators:

David Viertl
Francesco Cicone
Thibaut Denoël
Judith Delage
Silvano Gnesin
Luca Suter
Basile Keshavjee
Ana Maria Quintela Pousa
Marion Curdy
Costa Georgantas

Collaborations:

Georges Coukos
Nicolo Riggi
Marie-Catherine Vozenin
Thierry Pedrazzini
Catherine Yzydorczyk
Ivan Stamnenkowic
Ping-Chi Ho

Sponsors:

- R'Equip SNSF N ${ }^{\circ} 150837$
- Swiss Card-Onco Alfred \& Annemarie Von Sick Grant
- Horizon 2020: Marie SkłodowskaCurie ITN

FNSNF

Swiss National Science foundation

Niklaus Schaefer
John O. Prior

