Process Modelling and Dynamic Simulations of CO₂ Cooling Systems

Viren Bhanot* Paolo Petagna Dr. Andrea Cioncolini

PROJECT OVERVIEW

background & motivation

Tracker Cooling: The story so far

AMS Tracker	LHCb Velo	ATLAS IBL	CMS Pixel
• ~ 190 W	• ~ 1 kW	• 2 kW	• 2x 15 kW

Future systems

LHCb VELO+UT upgrade (2019) • 2x 7 kW	CMS Tracker (2024) • ~ 200 kW	ATLAS Tracker (2024) • ~ 200 kW
---	----------------------------------	------------------------------------

Silicon cooling for the next decade will be accomplished using CO₂

Next generation system challenges

Problems

- Order of magnitude larger cooling loads (around 200 kW)
- Lower-than-ever evaporator temperatures (< -35°C)
- Many plants operating in parallel
- Shift to Microchannel evaporators (with many parallel channels)

Research Questions

- What to do about the accumulator?
- What about flow instabilities?
- How to move CO₂ quickly between the cavern and ground level
- How should these new plants be controlled?
- ...what if something breaks/doesn't work?

Numerical Simulation

- Reality operates in real time but simulations are faster
- Building test setups is **necessary** but costs both time and money
- Simulations give insight into plant behavior
- Ability to study difficult-to-measure parameters
 - Vapour quality / void fraction
 - Two-phase fluid states
- Ability to study 'what if' scenarios; especially useful for controls
- Ultimately: Operator training and virtual commissioning

Research Objectives

- Develop tool for dynamic simulations of 2PACL based cooling systems
 - Scant prior art available performing thorough numerical modelling of such systems
 - No off-the-shelf solutions for 2PACL systems
- Use the tool to assist in design of next generation of plants
- Use the tool for investigating system control of new plants

This talk: progress made thus far in developing such a tool.

CO₂ RESEARCH APPARATUS (CORA)

test setup for this project

Overview

- 2 kW, -35°C, 2PACL plant
- Repurposed for current project:
 - Upgraded with in-stream PT100 sensors in flow (instead of on tube)
 - Pressure and temperature measured at the inlet and outlet of each component
 - Plant located in an air-conditioned room
- Types of data collected:
 - Accumulator set-point step change
 - Evaporator load step change
 - Plant startup
 - Plant shutdown

LIBRARY ARCHITECTURE

Software: EcosimPro

- Object-oriented modelling
- Acausal equations (w/ equation sorting algorithms)
- DAE solvers capable of handling stiff equations, sparse matrices
- Previous thermofluid code: Cryolib

// mass balance
geo[i].V*(drho_dP[i]*P_Pa[i]'+drho_dh[i]*h[i]') = m[i] - m[i+1]
// energy balance
geo[i].V*((h[i]*drho_dP[i]-1)*P_Pa[i]' + \
(h[i]*drho_dh[i]+rho[i])*h[i]') = mh[i]-mh[i+1] - Q[i]

Object-Oriented Modelling

- Very useful in physical modelling exercises
- Easy components reuse
- For example, an Accumulator contains:
 - Accumulator metal shell
 - Lumped refrigerant volume
 - Cooling spiral
 - Thermosyphon cartridge heater

Overview

- Pressure and enthalpy as state variables
- Finite volume method for discretization
- Staggered grid scheme for decoupling the momentum equation
- Quasi-steady state momentum equation
- Slip-ratio based correlations for two phase flow
- Upwind scheme method for dealing with reverse flow
- Port connectors for handling splitting and merging flows

Governing Equations (using P,h variables)

Mass and energy balance:

$$V_{i}\left[\frac{\partial\rho}{\partial P}\Big|_{h,i}\frac{dP}{dt} + \frac{\partial\rho}{\partial h}\Big|_{P,i}\frac{dh}{dt}\right] = \dot{m}_{i} - \dot{m}_{i-1}$$
$$V_{i}\left[\left(h_{i}\frac{\partial\rho}{\partial P}\Big|_{h,i} - 1\right)\frac{dP}{dt} + \left(h_{i}\frac{\partial\rho_{i}}{\partial h_{i}}\Big|_{P,i} + \rho_{i}\right)\frac{dh_{i}}{dt}\right] = \dot{m}_{i-1}h_{i-1} - \dot{m}_{i}h_{i} - \dot{Q}_{i}$$

Momentum equation:

$$\dot{m} = \frac{m_0}{\sqrt{dP_0}} \sqrt{|P - P_{out}|} \cdot sign(P - P_{out})$$

Thermal components energy balance:

$$\frac{dT_{w}}{dt} = -\frac{\dot{Q}_{in} + \dot{Q}_{out}}{M_{wall} \cdot c_{p,wall}}$$

Finite Volume Method

- Discretize component into equal-sized control volumes
- Alternatives are: finite difference and finite element method
- Finite volumes easy to visualize
- Moving boundary method: good for control purposes

Staggered Grid Scheme

- Momentum grid offset from thermal grid by half cell width
- Mass and energy solved on thermal grid, momentum equation solved on momentum grid
- No averaging of properties needed
- Reduces coupling of equations
- Improves solver speed and robustness

Upwind Scheme

Two-phase flow modelling

- Three options
 - Ignore it (homogeneous flow)
 - Correct for it (slip ratio based models)
 - Model it thoroughly (Separated flow model)
- Slip-ratio based models adopted as first approximation
- Circumvents need for major modifications to governing equations
- Better (lower) prediction of void fraction: slower transients, more accurate charge prediction

VALIDATIONS OF MODEL OF RESIDENTIAL HEAT PUMP

Heat pump validation

- Well-documented results
- Primary cooling in 2PACL is vapour-compression
- Relatively complex system:
 - Compressor
 - Valves
 - Heat Exchangers
- Simulation cycle: 6 min on, 24 min off

Test conditions	Indoor	Outdoor
D-test	26.7°C	27.1°C
High Temperature Cyclic	21.1°C	8.3°C

Cooling Mode

Reference: **"Comparison of Two Object-Oriented Modeling Environments for the Dynamic Simulations of a Residential Heat Pump**", Bhanot, V., Dhumane, R., Petagna, P., Cioncolini, A., Ling, J., Aute, V., Radermacher, R., 17th International Refrigeration and Air Conditioning Conference at Purdue, Purdue University, 2017

TRANSIENT SIMULATIONS OF 2PACL SYSTEMS

Accumulator sizing

- One alternative : Tiny accumulator in the cavern, and most of the CO₂ storage on surface level
- Research Question: How tiny?
 - Accumulator might get overwhelmed and fill up completely
 - Will that be a safety concern or purely a performance concern?

Results

2. 2PACL Step Change Simulations

- Original 2PACL concept (chiller cools accumulator)
 - Complete chiller model
 - Constant HTC
- Accumulator set point from 20 bar, up to 30 bar and down to 20 bar again
- Evaporator load step change from 1.5 kW to 2 kW

Results: Set point change

Results: Evaporator load change

Future Work

- Model refinement
 - Good heat transfer coefficient values
 - Incorporate CO₂-side piping
 - Solver stability
- Validations against experimental data
- Incorporate PLC logic (PLC library based on UNICOS available within EcosimPro)
- Use library for component design and controller logic studies for DEMO and other upcoming plants
- Use library for safety and training related studies

Virtual Commissioning

Reference: Rogez E., Bradu B., Moreaux A., Pezzetti M., Gayet P., Coppier H. "A Simulation Study for the Virtual Commissioning of the CERN Central Helium Liquefier", in Proceedings of the twenty-second International Cryogenic Engineering Conference ICEC22, KIASC, pp. 249-253 (2009).

Summary Slide

- Objectives of the current work:
 - tool for study of 2PACL systems
 - Optimal control design
 - Virtual commissioning and operator training
- Component library developed and behaves as expected
- Simulations are faster than real time (on the whole)
- Endless future work!
 - Validations against experimental data
 - Investigations into transients involving CO₂ flows in microchannels
 - DEMO project: Accumulator sizing,