PROGRESS TOWARDS THE THERMAL MANAGEMENT OF THE CBM SILICON TRACKING SYSTEM (STS)

<u>Kshitij Agarwal</u>¹, Piotr Koczon², Evgeny Lavrik¹, H.R. Schmidt^{1,2}, Oleg Vasylyev²

¹Eberhard Karls Universität Tübingen – Tübingen (DE) ²GSI Helmholtz Centre for Heavy Ion Research – Darmstadt (DE)

Forum on Tracking Detector Mechanics – 2018 25/06/2018

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Physikalisches Institut

UNDERSTANDING THE PROBLEM – CBM PHYSICS

- CBM aims to explore regions of high-baryonic densities of QCD phase diagram
- Requires detection of rare probes
 - $\rightarrow 10^5 10^7$ collisions/sec (Au-Au)
 - \rightarrow Momentum Resolution $\Delta p/p \approx 1-2\%$
 - ightarrow High track reconstruction efficiency with pile-up free track point determination

More Info on CBM Physics:-

The CBM physics book: Compressed baryonic matter in laboratory experiments Lect.Notes Phys. 814 (2011) pp.1-980 (DOI: 10.1007/978-3-642-13293-3)

Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR Eur.Phys.J. A53 (2017) no.3, 60 (DOI: 10.1140/epja/i2017-12248-y)

D Springe

The CBM Physics

ompressed Baryonic Matter in

Book

UNDERSTANDING THE PROBLEM – STS REQUIREMENTS

- Silicon Tracking Station: Key to CBM Physics
 - ightarrow 8 Tracking Stations inside 1Tm field
 - ightarrow 896 double-sided micro-strip sensors
 - \rightarrow Low Material Budget: 0.3% 1.5% X₀/station

→ Self-triggering front-end electronics located outside acceptance → ~1.8 million r/o channels + ~16000 r/o ASICs "STS-XYTER"

40kW Electronic Power Dissipation

FEE with r/o ASICs

Outside Acceptance

Ultra-thin Microcables Inside Acceptance

Silicon Tracking System in Dipole Magnet

<u>More Info on STS Geometry and Integration:-</u> Oleg Vasylyev – Mechanical concept, design and prototyping of the Silicon Tracking System for the CBM Experiment at FAIR Forum on Tracking Detector Mechanics, Marseilles – 2017

Silicon Sensor

Forum on Tracking Detector Mechanics - 25/06/2018

UNDERSTANDING THE PROBLEM – STS REQUIREMENTS

- Silicon Tracking Station: Key to CBM Physics
 - → Non-ionising Radiation tolerance: $\leq 10^{14} n_{eq} \text{ cm}^{-2}$ (5-10 months operation @10MHz Au-Au)
 - Sensor leakage current increases with fluence $\Delta I = \alpha \cdot \Phi_{eq} \cdot (A \cdot d)$
 - Sensor leakage current increases with temperature $I_L(T) \propto T^2 exp(-1/T)$
 - \rightarrow Signal-to-noise \geq 10
 - Shot Noise $\propto \sqrt{I_L}$
- Sensor cooling mandatory to:
 - ightarrow Maintain S/N
 - ightarrow Avoid thermal runaway
 - ightarrow Suppress reverse annealing

Keeping the sensors at -10°C at all times

<u>More Info on STS Radiation Environment:-</u> J. Heuser et al. – Technical Design Report for the CBM Silicon Tracking System (2013) [GSI Report 2013-4]

Cooling Requirements

- Total Electronics Power ~ 40kW
- FEE temp. < -10°C to avoid any heat transfer to sensors</p>
- Less space available for respective cooling plates \rightarrow <u>Small tubes needed</u>

COOLING REQUIREMENTS

- Total Electronics Power $\sim 40 \text{kW}$
- <u>FEE temp. < -10°C</u> to avoid any heat transfer to sensors
- Less space available for respective cooling plates \rightarrow <u>Small tubes needed</u>

STS COOLING DEMONSTRATOR

STS COOLING DEMONSTRATOR

FEE COOLING – CONCEPT

FEE COOLING – CONCEPT

OPTIMISATION OF OPERATIONAL PARAMETERS

- Important to predict pressure drop and local HTC along the tube length in 2-phase CO₂ flow
 - \rightarrow Flow Pattern Maps (FPMs) derived by Cheng, Thome et al. at EPFL Lausanne
 - → Long tube divided in small elements (~1mm) to compute flow properties
- Calculations performed based on CO₂ Branch Calculator (CoBra) by Verlaat, Zhang et al.
 - ightarrow Model developed in MATLAB
 - \rightarrow State properties derived from REFPROP NIST
- Current measurements done with 2PACL boundary conditions i.e.,
 - ightarrow Fixed outlet pressure
 - \rightarrow Fixed inlet temperature (enthalpy)
- Could be varied for different setups (eg. Vapor compression cycles, liquid overflow cycles etc.)
- In principle, could be developed for other coolants with respective FPMs

OPTIMISATION OF OPERATIONAL PARAMETERS – COBRA

- \rightarrow Complex bi-phase CO₂ calculations could be done by this approach
- → Used extensively for designing and analysing cooling systems for ATLAS, CMS, LHCb

More info on CoBra:-

- B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209
- *Z. Zhang, CERN-THESIS-2015-320 (2015)*

OPTIMISATION OF OPERATIONAL PARAMETERS – COMPARISION

Forum on Tracking Detector Mechanics - 25/06/2018

K. Agarwal - Thermal Management of CBM-STS

COOLING PLATE (HEAT EXCHANGER)

- Press-fitted tube channel plates
- Copper tubes (O.D. 6mm) press-fitted in Aluminium base
- Widely available commercially → Relatively cheap (~3k€)
- Dimensions: 460mm (L) x 160mm (H) x 15mm (W)
- Tested upto 100 bars without issues at GSI Darmstadt
- Limited tube lengths (~3m) due to large bending radius
- Used for thermal interface measurements with H₂O were done at EKU Tübingen

Optimisation Of Operational Parameters – Demonstrator

Forum on Tracking Detector Mechanics - 25/06/2018

Optimisation Of Operational Parameters – Demonstrator

OPTIMISATION OF OPERATIONAL PARAMETERS – DEMONSTRATOR

- Similar computional characterization to be done for other FEE and ROB-POB plates
- More accuracy expected with component freeze of electronics

Temp (Celsius)

-10.2

-11.4

-12.6

-13.8

-15

-16.2

-17.4

-18.6

-19.8

-21

-22.2

-23.4

-24.6

Max. FEE temp. < -10°C

FEE shielding encapsulates

higher FEE temp.

OPTIMISATION OF THERMAL INTERFACES

- Thermal Interface Materials (TIMs)
 - ightarrow Increase area of contact at microscopic level
 - \rightarrow Increase overall thermal conductivity (k_{air} = 0.026 W/(m·K))
- Relative measurements done with H₂O at 15°C

FEB-8 with ceramic

resistors and PT100 sensors

OPTIMISATION OF THERMAL INTERFACES – TAKEAWAYS

<u>Extruded FEE Box</u> (Variation w.r.t. center = -110 to 220μm) <u>Flat FEE Box</u> (Variation w.r.t. center = 5 to 30μm)

Flattening interfaces improves the results substantially (~°5C)

F5

Interface 3: Thermal Glue 1

F3

FEE Box Fins

F4

F2

27.5

F1

DENFINING THERMAL INTERFACES IN SOLIDWORKS

- Modelling the epoxy layer as a separate component requires the use of a very small element size
- Could possibly result in meshing failure or an unnecessarily large number of elements → More computation time
- Better to use thermal resistance as surface-to-surface contact condition caused by the epoxy layer
- Careful splitting of surfaces is required for accurate thermal resistance modelling

TIM Properties for this study			
	k (W/m·K)	d (µm)	R_{Θ} (=d/k; m ² ·K/W)
Grease (KP97)	5.0	30	6.0 x 10 ⁻⁶
C-Foil (QGF-G03)	16.0	125	7.8 x 10 ⁻⁶

More Info:

http://help.solidworks.com/2017/english/SolidWorks/cwo rks/c_Thermal_Contact_Resistance_contact_analysis.htm

OPTIMISATION OF THERMAL INTERFACES – TAKEAWAYS

FEE COOLING – CONCEPT

OPEN QUESTIONS – COOLING PLANT

OPEN QUESTIONS – COOLING PLANT

<u>Vapor Compression Cycle</u> (Suitable for radiation environment?) Commercially available with HM!

OPEN QUESTIONS – COOLING PLANT

Figure 1 - General diagram of CO₂ pumped system.

Conceptually available from Danfoss and Emerson Climate Tech (only by-parts), but no ready-made cooling plants available

More Info:-

- http://files.danfoss.com/TechnicalInfo/Dila/01/DKRCIPA000E102_Pumped_co2_in_industrial _refrigeration_systems_Final.pdf
- http://www.emersonclimate.com/Documents/FlowControls/pdf/2015CO2-07-R2-Commerical-CO2-Handbook-(Sept2015).pdf

Figure 3 - Integrated control of pump-circulated CO2 systems

CONCLUSIONS AND OUTLOOK

- CBM-STS Cooling Requirements:
 - Electronics: ~ 40kW \rightarrow at most -10°C \rightarrow Bi-Phase CO₂ cooling
 - Sensors: ~ $6mW/cm^2$ at end-of-life \rightarrow -10°C around beam pipe \rightarrow Forced N₂ cooling
 - Detector operation in a thermal insulating box (CF sandwiches) → RH << 1%@25°C
- Bi-Phase CO₂ calculations done to obtain operational parameters
 - Inspired from CoBra; calculations are comparable ☺
 - Possibility to extrpolate to other coolants, if needed
- Aforementioned calculations combined with Thermal FEA
 - Reasonable 1st order approximation
 - FEE temp. < -10°C ☺
 - Open possibility for more accuracy in calculations for better understanding
- Thermal interface optimisation done for removable interfaces
 - Flattening the surfaces improves the results substantially
 - Grease gives better thermal performance than Graphite Foil (given the FEE integration concepts)
- Cooling demonstrator under design to realistically show cooling concepts viability \rightarrow Cooling plant with ~ 5.5kW cooling capacity needed!!

THANKS A LOT

BUT WAIT! THERE'S MORE... BACKUP

Optimisation Of Operational Parameters – Demonstrator

Forum on Tracking Detector Mechanics - 25/06/2018

COOLING REQUIREMENTS - SENSORS

Feedthroughs

1st Dummy

- 108 cables squeezed in 2cm gap!
- Sealed with silicone & filled with PUR foam

Feedthroughs

Similar tests would be done for all kinds on connectors (HV, LV, cooling, optical etc)

Test setup already under fabrication in Uni. Tubingen workshop (to be delivered by end of this month)

STS Integration Meeting

a 2D histrogram

Plot showing deviation in Z

STS Integration Meeting 22.06.2018

