

Istituto Nazionale di Fisica Nucleare Sezione di Milano Forum on Tracking Detector Mechanics Valencia, 25-27 June 2018

Calibrated orifices for CO₂ cooled detectors

<u>Simone Coelli</u>, Andrea Capsoni, Mauro Monti, Davide Rosati, Danilo Trotta, Ennio Viscione INFN MILANO

Working for LHCb UT and ATLAS ITk Endcap Collaborations

SUMMARY

- ISSUES USING EVAPORATIVE COOLING
- COOLING SYSTEM DESIGN IMPLEMENTING ORIFICES AS FLOW RESTRICTORS
- ORIFICES CHARACTERIZATION EXPERIMENTAL MEASUREMENTS WITH CO₂
- PROS AND CONS

INTRODUCTION

Focus on Silicon particle trackers

Detector **dissipate power**:

- main contribution: Front-End electronics
- The **Sensors dissipation increase** toward the end of life, in highradiation environment, near interaction point

To survive 'thermal run-away':

- thermal power has to be extracted
- **sensor temperature** has to be maintained low, i.e. under -5 °C

DETECTOR COOLING USING BOILING FLUIDS

Several trackers have a **cooling channel integrated** into the local support for the sensors

CO₂ BOILING IN THE CHANNEL AT TEMPERATURES IN THE RANGE -20 °C ...-40 °C

BENEFITS:

ATLAS ITk ENDCAP Half-ring

Good heat transfer efficiency

=> smaller flow-rate needed => smaller diameter => Less material => higher radiation length

Nearly uniform temperature

Saturation temperature drops slowly along the cooling channel in relation to the fluid pressure drop

DRAWBACKS USING BOILING FLUIDS

High pressure system

Max Design Pressure > 80 bar (i.e. rupture disk installed dictates 130 bar)

Risk of thermal-hydraulic instabilities When the detector has parallel evaporator channels the circuit design is very important to ensure a margin against

uneven flow distribution

Risk of dry-out

If the cooling flow-rate decreases in an evaporating channel => detector damage

PARALLEL BOILING CHANNELS

For parallel evaporators connected to common headers:

Hydraulic resistance at the inlet improves stability:

System less sensible to the pressure drop variations of the two-phase region

 \Rightarrow The cooling distribution has to implement INLET HYDRAULIC RESISTANCE that should **induce a pressure drop 5** ... **10 times bigger than the EVAPORATORS pressure drop** in nominal operation

Hydraulic resistance at the evaporator outlet is detrimental

=> avoid exhaust flow cross-section restrictions

COOLING SYSTEM DESIGN IMPLEMENTING ORIFICES AS FLOW RESTRICTORS

LHCb UT TRACKER

Total cooling power ~ 4 kW

CO₂ evaporating in 68 parallel 'serpentines'

2 mm inner diameter Titanium cooling pipe

One half of the UT Box

EVAPORATORS Thermal-hydraulic characterization

Analytical calculations difficult when no correlations are available for peculiar design typologies

=> Experimental investigation:

- measurements on 1:1 prototypes
- Full power with dummy heaters
- TRACI 2-Phase Controlled Pressure cooling unit

UT DETECTOR PARALLEL EVAPORATORS

UT is made of 8 similar units

Read-out ASICs distribution

Differencies beetwen parallel evaporators: pipe in the central stave:

- Longer
- More bends
- thermal load:
- Central sta 50% more power than lateral staves

Cental stave measured pressure drop at working point is around 350 mbar

⇒ design pressure drop for the inlet restrictors = 3 bar

UT CO₂ DISTRIBUTION SYSTEM

Manifolding and connection piping

CALIBRATED ORIFICES are used as inlet flow restrictor

Advantages:

- space saving in a crowded area
- no need for 68 capillaries and additional joints

VCR gasket

Laser orifices on VCR blind gaskets

LHCb UT manifold are outside the detector active area

=> Possible to use Swagelok Stainless Steel components

VCR connections are used in the assembly

WARNING: install the flow restrictors on the correct side (the inlet)!

ORIFICES CHARACTERIZATION EXPERIMENTAL MEASUREMENTS WITH CO₂

CHARACTERIZATION OF FLOW RESTRICTORS WITH CO₂

Experimental measurement of the hydraulic resistance to be mounted at the inlet

Investigations are in progress in Milano: capillary and orifices pressure drop and temperature drop

The actual work is dedicated to both the LHCb UT tracker and the ATLAS ITk Pixel Encap, but the measurements and outcomes can be **useful for any CO2 cooled system**

TEST CIRCUIT FOR THE CO2 TEST

TEST LOOP

- COLD-BOX WITH ARMAFLEX
 INSULATION
- CO₂ COOLING SUPPLY FROM TRACI COOLING UNIT WITH CO₂ MASS FLOW-RATE MEASUREMENT
 - CO₂ PRESSURE AND TEMPERATURE TRANSMITTERS BEFORE/AFTER THE COMPONENT UNDER INVESTIGATION

Flow restrictors tested:

- 200 micron (0.008") Laser orifice in VCR gasket
- 250 micron (0.010") Swagelok flow restrictor
- 305 micron (0.012") Swagelok flow restrictor
- 380 micron (0.015") Swagelok flow restrictor.

FLOW RESTRICTORS FOR THE CO, COOLING TEST

SWAGELOK ¼ INCH FLOW RESTRICTOR

FROM CATALOGUE: 6LV-4-VCR-6-DM-010P, 6LV-4-VCR-6-DM-012P, 6LV-4-VCR-6-DM-015P, 6LV-4-VCR-6-DM-017P

Flow Restrictors

This product can be used in liquid or gas delivery systems where repeatable flow reduction or limiting is required.

- One piece. compact design saves space
- Standard orifice sizes drilled through a 1/4 in. male VCR union
- No dead volume for clean operation Identification of orifice and heat code
- marked clearly on the body Electropolished, cleaned, and
- packaged in accordance with Swagelok Ultrahigh-Purity Process Specification (SC-01) (MS-06-61)
- Working pressure 10 000 psig (689 bar)

Ordering Information and Dimensions

VCR comp	onents with fixed threads must remain
stationary	during normal installation. These fitting
with rotatin	is should be assembled only to glands ng female nuts.

Ex, in. (mm)	Ordering Number	E
0.010 (0.254)	6LV-4-VCR-6-DM-010P	0.0
0.012 (0.305)	6LV-4-VCR-6-DM-012P	0.0
0.015 (0.381)	6LV-4-VCR-6-DM-015P	0.
0.017 (0.432)	6LV-4-VCR-6-DM-017P	0.0
0.020 (0.508)	6LV-4-VCR-6-DM-020P	0.0
0.023 (0.584)	6LV-4-VCR-6-DM-023P	0.0
0.025 (0.635)	6LV-4-VCR-6-DM-025P	0.0
0.026 (0.660)	6LV-4-VCR-6-DM-026P	0.0
0.027 (0.686)	6LV-4-VCR-6-DM-027P	0.0
0.030 (0.762)	6LV-4-VCR-6-DM-030P	0.0
0.035 (0.889)	6LV-4-VCR-6-DM-035P	0.0
0.040 (1.016)	6LV-4-VCR-6-DM-040P	0.
0.045 (1.143)	6LV-4-VCR-6-DM-045P	

[Ex, in. (mm)	Ordering Number
[0.050 (1.270)	6LV-4-VCR-6-DM-050P
- [0.055 (1.397)	6LV-4-VCR-6-DM-055P
[0.060 (1.529)	6LV-4-VCR-6-DM-060P
[0.065 (1.651)	6LV-4-VCR-6-DM-065P
[0.070 (1.778)	6LV-4-VCR-6-DM-070P
[0.075 (1.905)	6LV-4-VCR-6-DM-075P
[0.080 (2.032)	6LV-4-VCR-6-DM-080P
- [0.085 (2.159)	6LV-4-VCR-6-DM-085P
- [0.090 (2.286)	6LV-4-VCR-6-DM-090P
[0.093 (2.362)	6LV-4-VCR-6-DM-093P
[0.095 (2.413)	6LV-4-VCR-6-DM-095P
[0.100 (2.540)	6LV-4-VCR-6-DM-100P

1/8 INCH VCR GASKET

Hole: 0,250 mm (= 250 μm)

LASER HOLE IN VCR GASKET

CUSTOM ORIFICES: 200, 225, 250, 275 μm OTHER GEOMETRICAL CHARACTERISTICS USABLE FOR THE PRESSURE DROP CALCULATION IS LENGTH I =0,2 mm

SPREADSHEET FOR ORIFICE PRESSURE DROP CALCULATION

Prediction formulas found in the "IDELCHIK HANDBOOK OF HYDRAULIC RESISTANCE" for the **'THICK-EDGED ORIFICE'** model. We are outside range of validity in many cases.

pressure	drop spread sheet		IN	OUT	
				SI Units of measu	rement
d,orifice diameter	305 micron	0,305	mm	0,000305	m
D	diameter of the channel section before the narrow section of the stretch of the orifice	4,6	mm	0,0046	m
F ₀	Area of the narrowest section of the stretch of the orifice		Α=(π*φ^2)/4	7,30246E-08	m^2
F ₁	Area of the channel section before the narrow section of the stretch of the ori	fice	Α=(π*φ^2)/4	1,66106E-05	m^2
F ₀ /F ₁				0,004	
F_1/F_0				227,465735	
	lenght of the stretch, depth of the orifice	1,5	mm	0,0015	m
l/Dh	(Dh=d)			4,9180	
ρ	fluid density			1050	Kg/m^3
q _m	mass flow rate	1	g/s	0,001	Kg/s
W ₁	mean stream velocity in the section before the narrowest section of the orifice	2		0,0573	m/s
^-8				3,90184E+22	
φ(l')				0,785	
τ				0,393	
U	CO ₂ cinematic viscosity			0,00000014	m^2/s
R _e	Reynolds number			1883,888	
λ	friction coefficient of referred lenght of conduit (in laminar flow)			0,034	
ζ	resistance coefficient of stretch			105953,1229	
Δр	pressure drop		Δp=(ζ*ρ*w1^2)/2	182862	Ра
				1,83	bar

Geometrical parameters

ORIFICE PRESSURE DROP CALCULATION-MEASUREMENT

The expected parabolic behavior for a liquid pressure drop is observed here Work in progress for the other geometries

MEASURED PRESSURE DROP VERSUS MASS FLOW-RATE AT SATURATION TEMPERATURE -25°C

PROS AND CONS

HYDRAULIC RESISTANCE ADDED AT THE INLET

CAPILLARY PIPE

- Usually adopted solution
- Require two connections at both sides
- Additional risk of leakage
- Can be long
- Can need to be coiled to reduce the necessary space

FLOW RESTRICTOR

- Less used in present tracker detectors
- A gasket (VCR) can become a restrictor
- Small diameter orifice => risk of clogging
- IT IS MANDATORY
 - To use proper filtering elements
 - To use a pure fluid (no moisture)
 - Take care of the cleanness of the plant lines
 - Vacuum the lines before filling

WORK IN PROGRESS

LHCb UT

- Manifold and connection pipe prototype is under construction
- Prototypes will be used at CERN for integration and cooling test

ATLAS ITk Pixel Encap

- Distribution system in this detector is inside the active area
- Titanium CO₂ piping
- We're going to make **thermal-hydraulic characterization** of Half-Ring prototypes on the CO₂ Baby-demonstrator

Under study:

- the use of flow restrictors alternative to capillary pipes
- the feasibility to **embed an orifice into the electrical breaker**

General

- On BD cooling plant we'll try to extend the measurements on flow restrictors at larger flows
- Define a spreadsheet for pressure drop predictions

Acknowledgements

Special thanks to the CERN cooling team always supporting our work

Thanks for the Attention

E-mail: coelli@mi.infn.it

ESTIMATION OF THE FLOW REYNOLDS NUMBER

CO₂ PHYSICAL PROPERTIES:

Saturation Properties for Carbon Dioxide CO₂

In the range of interest: -20 °C ...-40 °C

CO₂ physical properties <u>used in the pressure drop calculation</u>:

- Density
- Dynamic viscosity

(note: Kinematic viscosity is the ratio of dynamic viscosity to density)

Next slides show some plots captured from the web site of National Institute of Standards and Technology (NIST)

CO2 temperature = -25 °C CO2 Density at -25 °C = 1040 Kg/m3 CO2 Viscosity at -25 °C = 150 micro Pa s

CO₂ DENSITY

🗲 🕘 🚾 http://webbook. nist.gov /cgi/fluid.cgi?TLow=-40&THigh=-20&TInc=0.5&Applet=on&Digits=5&ID=C124389&Action=Load&Typ	pe=SatP&TUnit=C&PUnit=bar&DUnit=kg%2Fm3&HUnit=kJ%2Fkg&W	/Unit=m%2Fs&VisUnit=uPa*s8 ▾ ♂ Cerca	日本 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Saturation Properties for C ×			
File Modifica Visualizza Preferiti Strumenti ?			
🙀 🖉 Siti suggeriti 👻 🖉 Raccolta Web Slice 🔻			🔄 👻 🗟 👻 🖃 🖶 👻 Pagina 👻 Sicurezza 👻 Strumenti 👻 🔞 👻
Important Information About This Data			
Notes			
Other Data Available:			
 View data in HTML table. 			
 Download data as a tab-delimited text file. 			
 Main NIST Chemistry WebBook page for this species. 			
 Recommended citation for data from this page. 			
 Fluid data for other species 			
Fluid Data Data on Saturation Curve Plot Help Software credits 1200			
1000 100 1000 1	LIQUID PHASE	1040 kg/	m3 1032 kg/m3
Auxiliary Data	-32 -30 Temperature (C) VAPOUR PHASE	28 -26 Y: Density (kg/m3) I❤	-24 -22 -20
Reference States, IIR Convention Enthalpy H = 200 kJ/kg at 0°C for saturated liquid.			
			€ 100% ▼
🙀 👬 Hazon 📗 2016-0 📙 LHCb 🧳 🌔 Squirre 🌔 Saturat 🍠 👶 🥥	📑 🚺 😪 📣 🯹 💆	🔥 💦 Skype 🥠 Vidyo 🚦 Windo	🔥 2017-1 💿 📰 🤧 🍻 🖏 🙋 🖾 🗊 🕪 17:38 04/12/2017

CO₂ Dynamic Viscosity:

	2 50/D (19/2000, A_2) 50/07	
Saturation Properties for C X		
File Modifica Visualizza Preferiti Strumenti ?		
👍 🗃 Siti suggeriti 🔻 🦉 Raccolta Web Slice 👻		🏠 🔻 🖾 👻 🚍 🖶 👻 Pagina 👻 Sicurezza 👻 Strumenti 👻 🔞 👻 🎽
Important Information Important Information About This Data Notes		^
Other Data Available:		
 View data in HTML table. 		
 Download data as a tab-delimited text file. 		
 Main NIST Chemistry WebBook page for this species. 		
 Recommended citation for data from this page. 		
 Fluid data for other species 		
Fluid Data		
Data on Saturation Curve		
Plot Help Software credits		
200		■ vapor
liq	quid: -35.000 C, 178.33 uPa*s	Liquid
150		
(s, e,	LIQUID PHASE	7
40 100		
🕺 🔰 194 micro Pa s		140 micro Pa s
50		
-40 -38 -36	-34 -32 -30 -28 -26	-24 -22 -20
	Temperature (C)	
X: 🔤 - 33 🕻		
- ···	VAPOUR PHASE	
Auxiliary Data		
Reference States, IIR Convention		
Enthalpy H = 200 kJ/kg at 0°C for saturated liquid.		~
		€ ,100% ▼ "
🚱 🎛 Hazon 📔 2016-0 📔 LHCb 🤌 🤗 Squirre 🏀 Satura	rat 💋 실 🥥 📰 👔 😪 📣 褍 🌽 👰 🧖 💽 Skype 🥠 Vidyo	📲 Windo 🥂 🔁 2017-1 💿 🖼 🥠 🎲 🍓 💿 🙆 🖿 🌒 17:32

Kinematic viscosity is the ratio of *dynamic viscosity to density*

CO₂ Enthalpy liquid to vapour:

THIS FIGURE IS USED TO CALCULATE THE NEEDED COOLING MASS FLOW-RATE

- FOR A GIVER DIISIPATED POWER
- AND FOR A GIVEN CO₂ EXHAUST (DETECTOR OUTLET) VAPOUR FRACTION, i.e. X_{OUT} = 30 %

Notes

- Other Data Available:
- View data in HTML table.
- Download data as a tab-delimited text file.
- Main NIST Chemistry WebBook page for this
- Recommended citation for data from this patient
- Fluid data for other species

Dissipated power Q (W)

- Outlet vapour fraction X out (%)
- Latent heat of vaporization H vap h liq = H l-v (J/g)

=> calculated FLOW (g/s) = Q (W) / (0,30 * H l-v (J/g))

Data on Saturation Curve

Fluid Data

Plot Help Software credits 450 vapor: -35.000 C, 436.23 kJ/kg 🛯 liaui 400 350 Enthalpy (kJ/kg) 300 h l-v 283 J/g h l - v = 303 J/g $h \mid -v = 313 J/g$ 250 200 150 100 -38 -34 -32 -30 -28 -26 -24 -22 -20 Temperature (C) X: Te 35 °C \sim

G

2 🏷

S Skyp

2

Windo..

Auxiliary Data

Reference States, IIR Convention

Enthalpy H = 200 kJ/kg at 0°C for saturated liquid.

🥦 2017-1... 💿 📰 🤌 🌄 🐔 😢 💁 🗊 🕪

100%

STAVE ENERGY BALANCE

Inlet: CO₂ liquid near to saturation

Outlet: Vapour fraction X_{OUT} 30 % design point 50 % max

MASS FLOW-RATE CALCULATION: $\Gamma CO_2 = POWER / X_{OUT} * \Delta H_{LIQ-VAP}$

<u>CENTRAL "C" STAVE</u> X OUT = 30 % => Γ = 75 W / 0,3*280 J/g = ~ 0.9 g/s

LATERAL "A" STAVE X OUT = 30 % => Γ = 50 W / 0,3*280 J/g= ~ 0.6 g/s

 $\Delta H_{LIQ-VAP}$ = enthalpy difference liquid to vapour \sim 280 kJ/kg At evaporation temperature of - 25 °C

FLOW RESTRICTOR MEASUREMENT

OUTLET CONNECTION: I.D. 2 mm PIPE COILED 1 LOOP

INLET CONNECTION: SWAGELOK ORIFICE 0,01 INCH = 0,25 mm I.D.

DATE	2016-04-19
STAVE	"C"
FLOW DIRECTION	UPWARD
INSULATION	ARMAFLEX
STAVE INLET	RESTRICTOR 0,254 mm
STEADY-STATE	ОК
TRACI P SET POINT	17 bar _A
SATURATION TEMP	-23°C
HEATER POWER	75 W "nominal"
MASS FLOW-RATE	0,84 g/s (<i>TRACI V.1 LIMIT</i>)
CALCULATED X out	32 %

THE MEASURED RATIO BETWEEN THE $\triangle P$ OF THE CIRCUIT COMPONENTS SHOULD GUARANTEE THE STABILITY IN THE EVAPORATING PARALLEL CHANNELS