

1

Analytic thermoelectric modeling of silicon detectors - ATLAS ITk strips

Kurt Brendlinger Graham Beck (QMUL) Yu-Heng Chen (DESY) Claire David (DESY) Georg Viehhauser (Oxford) with input from Many Others

June 26, 2018 – Valencia

Particles, Strings, and the Early Universe **Collaborative Research Center SFB 676**

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

Motivating an Analytic Model for Silicon detector

- **•** Goal: model thermal and electric properties of silicon modules
- \bullet Thermal FEA results offer a snapshot of the thermal performance
	- Fixed power inputs
	- Fixed coolant temperature
- An analytic model of the thermal and electrical properties would:
	- Allow us to extrapolate to arbitrary inputs
	- Enable modeling of the entire lifetime of the detector (and predict thermal runaway)
	- Provide qualitative understanding of module behavior
	- ... and obtain results much faster compared to re-running FEA
	- The model discussed here is detailed in a [paper in Nucl. Instrum.](https://www.sciencedirect.com/science/article/pii/S0168900210005498) Methods

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips – Valencia – June 26, 2018 2

Five main components:

- 1. **Electrical:** Model of the module's electrical components
	- Including power estimates for each component, and interdependencies
- 2. **Thermal:** Linear model; estimate thermal impedances from FEA simulation
- 3. **Silicon:** Model of leakage current due to radiation damage
- 4. **Radiation levels** (particle fluence and total ionizing dose)
- 5. Encode any dependencies on temperature, radiation damage, etc. into the model
- In the following, we use the ATLAS ITk Strip detectors (barrel $+$ endcap) to illustrate the construction of the model

The Thermal Model Component and the thermal Model Component

Thermal schematic of the ATLAS ITk Strip module:

 \bullet Model the *thermal pathways* in 1 dimension, by analogy with the electrical model: **b) shows the replacement circuit, which is used to calculate the sensor temperature, as in ref. [1], however differently than in this reference we use a temperature-dependent T0 (to accommodate the temperature-dependent power from**

• Thermal impedances (resistance) must be determined using FEA (example later)

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

Calculating Sensor Leakage current

- "*I*ref" current taken at a reference temperature (*T*ref) –15° C
- Relationship between *I*ref and Fluence is linear (see plot)
- We can calculate the sensor leakage power at a given time using:
	- *I*ref vs fluence (Right)
	- Current-power relationship:

 $Q_{ref} = V_{bias}I_{ref}A_{sensor}$

• Relationship between leakage current & sensor T:

$$
Q \sim T_S^2 \ e^{-T_A/T_S}
$$

• Thermal balance equation:

$$
Q(T_S) = \frac{T_S - T_0}{R_t}
$$

• Solve (numerically) for T_S , $Q(T_S)$ by setting last two equations equal

K. Brendlinger **Endcap Thermal Impedances – First Results** 6

Sensor Q Headroom

Case Study: ATLAS ITk Strip Detector (Barrel and Endcap)

K.

K. Brendlinger **Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018**

- 13 modules in Strip $\frac{B\text{arrel}}{B}$ with \sim same geometry
	- Short strip (inner) and Long Strip (outer) layers
- 6 modules in **Endcap** with different geometry and electronics layout
	- Labeled R0-R5

- Silicon sensor
- Power Board:
	- DCDC converter "FEAST"
- Hybrid board:
	- ABC: Front-End chip
	- HCC: Control / readout chip
- Bus Tape
	- LV and HV distribution
- End-of-substructure (EOS) card
	- One per stave or petal side, additional powered readout components

nominal operating **CO2 Cooling with a nominal operating temperature of –35°C**

7.5 Prototype Thermo-Mechanical Modules

Basic Inputs to the Model

- Electrical Model
- Thermal model (and deriving thermal impedances using FEA)
- **Others**

Basic Electrical Model of the Module

- LV and HV electrical models
- **Orange** arrows are sources of power (heat)
- **Green** parameters depend on component temperature
- In general, these are linear networks, with a few important exceptions
	- All non-linear components must be adequately described (shown later)

*bPOL12V = DCDC converter

Electrical Component specifications come from Graham and Georg's thermal model. Most are similar to Sergio's numbers, with some di $\langle \bullet \bullet \rangle$ of $\langle \bullet \bullet \rangle$ lectrical C

* Endcap R1 values. TID Affected by TID bump t One side of endcap EOS only

K. Brendlinger **Endcap Thermal Impedances – First Results** and taken from the model of the m

Cross-section of the ATLAS ITk Strip module:

- Linear, 1-dimensional model
- Each component has its own effective thermal impedance
- Common thermal path between cooling pipe and silicon sensor
- Thermal impedances determined using FEA (see next slide)

Thermal Impedances: FEA Special Runs

- "Special FEA runs" powering each component type separately
- · Three "special" runs total: HCCs, DCDCs, ABCs
- \bullet Four unknowns: R_{cm} and R_{HCC} , R_{ABC} , R_{FEAST} (system over-constrained)
- \bullet Solve for common thermal path resistance R_{CM} first remaining R are trivial
	- If a <u>component *x* is powered</u>, its temperature is $\Delta T_x = P_x \times (R_x + R_{cm})$ (eq. 1)
		- If a different component *y* is powered and x is off, **∆Tx = Py×(Rcm) (eq. 2)**
		- Fit for Rcm using collection of (eq. 2) from each component;
	- Fit for RCM using collection of (eq. 2) from each component;
• Plug in Rcm to collection of (eq. 1) to solve for Rx for each component • Plug in Rcm to collection of (eq. 1) to solve for Rx for each component
		- (Ignoring effects like cross-talk between modules) Vu-Heng Chen

etc...

Fitting for common R_{CM}: An explanation

 \bullet Summary of endcap thermal impedances:

 \bullet Barrel thermal impedances:

the final numbers.

- **Notes** have only limited relation to the real 3d impedances in the 3d geometry of the stave. In particular
	- Could be some features caused by physical proximity of objects in some modules t_{c} is a short strip module strip modules, but the total power for the chip per set the chip per set of the chip pe
	- Cross-talk could also cause other features

Other Inputs to the Model

- DCDC Converter efficiency dependence on temperature, current
- Readout chips affected by Total Ionizing Dose ("TID bump")
- Flux and Total ionizing dose
- Operational profiles

Parameterizing DCDC Converter Efficiency (BEY) ATLAS $\text{C} \cup \text{C} \cup \text{C}$ made extensive studies of this effect of the parametrization of $\text{C} \cup \text{C}$ Table 2: Endcap module inputs. Starred (⇤) values are representative and taken from Endcap R1. Values with TID helarameterizing DCDC Converter. Ethicien only; in reality it is temperature- and current-dependent. Further notes are described in the text. Darameterizing DCDC Converter Fff

-
- for parameterized model $-\frac{1}{2}$ $-\frac{1}{2}$
	- exceeded

parameterization of the data is represented by the fit lines at fixed current.

Input: TID Bump Characterization

- Chips (ABCs, HCCs) digital current is affected by Total Ionizing Dose "TID Bump"
- Parameterization shape picked to match data
- The scale of the bump depends on the temperature and dose rate
	- TID bump is bigger at lower temperatures
	- TID bump is bigger at larger dose rates
- Increase in current affects performance of DCDC converter, total EC power requirements, etc.
- Note that dose-rate dependence causes shifts in the timing of the peak

Modeling of Flux / Total Ionizing Dose

- Barrel: Flux and TID is relatively stable across horizontal staves
- Endcap: Large variations in flux and TID, so we model each module (36 total) with its own flux and TID

- Flux in the range $2-5\times10^{14}$ n_{eq}/cm²
- TID in range 4.7–22.7 kRad

background in the calculated by 10% (the calculated backgrounds for the \sim lower than for the EOS modules). Operational Profiles

Model Outputs

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018 24

Power and Temperature outputs, one Module

- TID bump increases chip currents
- \rightarrow lower DCDC efficiencies, more power in DCDC $\mathcal{O}(\mathcal{O})$ and $\mathcal{O}(\mathcal{O})$ and $\mathcal{O}(\mathcal{O})$ and $\mathcal{O}(\mathcal{O})$ is a subsequently defined by
- \rightarrow higher temperatures in all components, sensor
- \rightarrow temperature-dependent TID bump decreases (damping effect)

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

Temperature and Sensor Q Headroom

- Sensor Q Headroom factor:
	- Sensor leakage power factor Q_{Max}/Q_S before thermal runaway is reached
- Coolant temperature headroom factor:
	- Maximum coolant temperature before thermal runaway is reached

Scenario Comparisons – Safety Factors

- With the thermoelectric model, opportunity to compare different scenarios
	- E.g. update power/currents of components
	- Test different scenarios
	- Apply different safety factors (below)

- Module-level effects can be propagated, to model the full system
- Note that maximum power is not the sum of the individual module maxima (offset TID peaks)
- Can be used to understand requirements for e.g. cables, cooling system

Testing Different Coolant Temperature Scenarios

K. Brendlinger **Endcap Thermal Impedances – First Results** 29

Testing Different Cooling Temperature Scenarios

- Nominal coolant temperature scenario is –35°C
- Can try different cooling scenarios to optimize for certain effects:
- \bullet e.g. TID bump (~year 2) is mitigated with higher temperatures
- e.g. Thermal runaway (end-of-life) is avoided using lower temperatures

Test the effect on the endcap modules

Trying Different Temperature Scenarios (II) (Desy ATLAS

• Note: Cannot expect perfect accuracy from $\frac{5}{5}$ 1 type of tuning Power headroom factor [cooling = special °C $\frac{1}{\sqrt{2}}$ ot e $\epsilon_{\rm P}$ sensor current < 2 mA at all times
te: Cannot expect perfect accuracy from $\frac{5}{5}$ and $\frac{10^{4}}{5}$ $\mathsf{ct}\,$ perfect accuracy fron. $\frac{10}{20}$

 \ldots \ldots \ldots

K. Brendlinger Analytic thermoelectric modeling of the ATLA Ω $\models N$

2

 $F_{\rm F}$ scrisur curr

 $\frac{1}{\sqrt{2}}$

2

Input for Design Issues:

- Petal design with DCDC converter exceeding 4A maximum specification
- Input for chip designers to guide maximum allowable chip currents
- Avoiding scenarios with thermal runaway
- Choosing among materials with different thermal conductivity

Specifications:

- System-wide: Maximum power load on the cooling system
- Load on bus tapes (LV, HV)
- Load on LV and HV cables
- Etc.

Benefits of an analytic Thermo-electric model:

- Indispensable tool for understanding full detector system
- Qualitative understanding of module, detector operation
- Allows fast comparison of multiple scenarios, safety factors

Caveat / Reminder:

- Thermoelectric model is only as good as the inputs
- Important to understand the individual components of the module:
	- FEA Simulation
	- Data collection: chips, DCDC converters, regulators, etc.

BACKUP

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018 34

Full Endcap FEA results, T_{Coolant}=30°C

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips – Valencia – June 26, 2018 35 $\frac{1}{2}$ is modeling of the ATLAC ITL stripe $\frac{1}{2}$ (density $\frac{1}{2}$ (see 26, 2010)

"O" refer to inner and outer (referring to the hybrids), "F" and "B" refer to the front and back of the petal, and

Thermal properties input to the FEA - Endcap

 $T_{\rm eff}$ is the 2.3 single 2.3: $T_{\rm eff}$ to the FEA $\rm _{1}$.

K. Brendlinger Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018 36 Hy the thermoeffective modeling of the $n_1 \text{E}$ to $n_1 \text{N}$ strips a valencial count $\text{E}(\theta)$

Endcap Temperatures, –35° C cooling scenario

K. Brendlinger **Endcap Thermal Impedances – First Results**

Endcap Power and current, –35° C cooling scenario

K. Brendlinger **Endcap Thermal Impedances – First Results**

Endcap – Other, –35° C cooling scenario

First Endcap R_{cm} Results

K. Brendlinger **Endcap Thermal Impedances – First Results**

40

Fitting for R_{cm}: Barrel Results (Short Strip)

- Barrel also checks Tape, HVMUX, and R_{HV} power sources
- R_{CM} is relatively linear in these cases; 10% safety factors are used for the Barrel

Fitting for R_{cm}: Barrel Results (Long Strip)

• Same story $-$ fit is decent.

• CO₂ cooling loop (2PACL system) \bullet CO₂ cooling loop (ZPACL system)

