

1

Analytic thermoelectric modeling of silicon detectors – ATLAS ITk strips

<u>Kurt Brendlinger</u> Graham Beck (QMUL) Yu-Heng Chen (DESY) Claire David (DESY) Georg Viehhauser (Oxford) with input from Many Others

June 26, 2018 – Valencia

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

K. Brendlinger

Analytic thermoelectric modeling of the ATLAS ITk strips – Valencia – June 26, 2018

Motivating an Analytic Model for Silicon detector

- Goal: model thermal and electric properties of silicon modules
- Thermal FEA results offer a snapshot of the thermal performance
 - Fixed power inputs
 - Fixed coolant temperature
- An analytic model of the thermal and electrical properties would:
 - Allow us to extrapolate to arbitrary inputs
 - Enable modeling of the entire lifetime of the detector (and predict thermal runaway)
 - Provide qualitative understanding of module behavior
 - ... and obtain results much faster compared to re-running FEA
 - The model discussed here is detailed in a paper in Nucl. Instrum. Methods

Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

Five main components:

- 1. **Electrical:** Model of the module's electrical components
 - Including power estimates for each component, and interdependencies
- 2. **Thermal:** Linear model; estimate thermal impedances from FEA simulation
- 3. <u>Silicon</u>: Model of leakage current due to radiation damage
- 4. Radiation levels (particle fluence and total ionizing dose)
- 5. <u>Encode any dependencies on temperature, radiation damage, etc. into the</u> <u>model</u>
- In the following, we use the ATLAS ITk Strip detectors (barrel + endcap) to illustrate the construction of the model

The Thermal Model Component

Thermal schematic of the ATLAS ITk Strip module:

• Model the <u>thermal pathways</u> in 1 dimension, by analogy with the electrical model:

Electrical	Thermal
Electrical resistance	Thermal resistance (R)
Current source	Power
Voltage	Temperature
$\Delta V = I \times R$	$\Delta T = P \times R$

• <u>Thermal impedances (resistance) must be determined using FEA</u> (example later)

K. Brendlinger

Calculating Sensor Leakage current

- " $I_{\rm ref}$ " current taken at a reference temperature ($T_{\rm ref}$) –15° C
- Relationship between $I_{\rm ref}$ and Fluence is linear (see plot)
- We can calculate the sensor leakage power at a given time using:
 - $I_{\rm ref}$ vs fluence (Right)
 - Current-power relationship:

 $Q_{ref} = V_{\text{bias}} I_{ref} A_{\text{sensor}}$

• Relationship between leakage current & sensor T:

$$Q \sim T_S^2 \ e^{-T_A/T_S}$$

• Thermal balance equation:

K. Brendlinger

$$Q(T_S) = \frac{T_S - T_0}{R_t}$$

• Solve (numerically) for T_S , $Q(T_S)$ by setting last two equations equal

Sensor Q Headroom

Case Study: ATLAS ITk Strip Detector (Barrel and Endcap)

K. Brendlinger

Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

9

- 13 modules in Strip <u>Barrel</u> with ~same geometry
 - Short strip (inner) and Long Strip (outer) layers
- 6 modules in Endcap with different geometry and electronics layout
 - Labeled R0-R5

- Silicon sensor
- Power Board:
 - DCDC converter "FEAST"
- Hybrid board:
 - ABC: Front-End chip
 - HCC: Control / readout chip
- Bus Tape
 - LV and HV distribution
- End-of-substructure (EOS) card
 - One per stave or petal side, additional powered readout components

CO₂ Cooling with a nominal operating temperature of -35°C

Basic Inputs to the Model

- Electrical Model
- Thermal model (and deriving thermal impedances using FEA)
- Others

Basic Electrical Model of the Module

- LV and HV electrical models
- Orange arrows are sources of power (heat)
- Green parameters depend on component temperature
- In general, these are linear networks, with a few important exceptions
 - All non-linear components must be adequately described (shown later)

*bPOL12V = DCDC converter

Electrical Component specifications

Description	input voltage	Specifications for 1 component			n components	Total power	
Description	[V]	current [A]	power [W]	eff	per module (1 side)	(1 side) [W]	
AMAC 1.5V	1.5	0.045	0.0675		_		
AMAC 3.0V	3.0	0.002	0.006		—		
Total AMAC	_	_	0.0735		1	0.0735	
ABC (digital)	1.5	0.035	0.0525		_		
ABC (analog)	1.5	0.066	0.099		_		
Total ABC	_	0.101	0.1515		21^{*}	$3.1815^{*\mathrm{TID}}$	
HCC (digital)	1.5	0.125	0.1875		_		
HCC (analog)	1.5	0.075	0.1125		_		
Total HCC	_	0.200	0.3		2^*	$0.6^{*\mathrm{TID}}$	
FEAST (ABC,HCC)	—		$\frac{(1-\varepsilon)}{\varepsilon}(P_{ABC}+P_{HCC})$	f(T,i)	_	$1.2605^{*\mathrm{TID}}$	
"FEAST" AMAC regulators	_				_	0.415	
Total FEAST	_				1	$1.6755^{*\mathrm{TID}}$	
Total Module (R1)	—					5.53^{*}	
EOS							
VTRx: lpGBTx	1.2	0.625	0.750		_		
VTRx: GBLD 1.2V	1.2	0.0095	0.0114		_		
VTRx: GBLD 2.5V	2.5	0.018	0.045		_		
Total VTRx			0.8064		1	0.8064	
GBTIA	2.5	0.053	0.1325		1	0.1325	
FEAST					0.5^\dagger	0.35^{\dagger}	
DCDC2				88%	0.5^\dagger	0.104^\dagger	
Total EOS						1.4	
EOS both sides						2.8	

* Endcap R1 values. TID Affected by TID bump † One side of endcap EOS only

Endcap Thermal Impedances – First Results

Cross-section of the ATLAS ITk Strip module:

- Linear, 1-dimensional model
- Each component has its own effective thermal impedance
- <u>Common thermal path</u> between cooling pipe and silicon sensor
- <u>Thermal impedances determined using FEA</u> (see next slide)

Electrical	Thermal
Electrical resistance	Thermal resistance (R)
Current source	Power
Voltage	Temperature
$\Delta V = I \times R$	$\Delta T = P \times R$

Thermal Impedances: FEA Special Runs

- "Special FEA runs" powering each component type separately
- Three "special" runs total: HCCs, DCDCs, ABCs
- Four unknowns: R_{cm} and R_{HCC}, R_{ABC}, R_{FEAST} (system over-constrained)
- Solve for common thermal path resistance R_{CM} first remaining R are trivial
 - If a <u>component x is powered</u>, its temperature is $\Delta T_x = P_x \times (R_x + R_{cm})$ (eq. 1)
 - If a <u>different component y is powered and x is off</u>, $\Delta T_x = P_y \times (R_{cm})$ (eq. 2)
 - Fit for Rcm using collection of (eq. 2) from each component;
 - Plug in Rcm to collection of (eq. 1) to solve for Rx for each component
 - (Ignoring effects like cross-talk between modules)

Yu-Heng Chen

Fitting for common R_{CM}: An explanation

(Endcap Module R0)

• Summary of endcap thermal impedances:

Module	$R_{\rm cm} [{\rm K}/{\rm W}]$	$R_{\rm FEAST}$	R_{ABC}	$R_{ m HCC}$
R0	0.802	26.045	0.917	12.632
R1	0.991	28.256	0.671	12.744
R2	1.410	28.883	1.550	13.794
R3	0.873	29.333	0.566	6.812
R4	0.744	26.816	1.432	13.027
R5	0.596	27.450	1.034	13.177

• Barrel thermal impedances:

in [°C/W]	R_C	R _M	Rs	R_{EOS}	R_{ABC}	R_{HCC}	R_{FEAST}
Short strip module at EOS	0.890	0.222	0.02	15.0	1.003	12.305	19.650
Short strip module at middle	1.1	60	0.02	-	0.928	13.157	19.751
Long strip module at EOS	0.960	0.279	0.02	15.0	2.194	24.195	19.062
Long strip module at middle	1.3	860	0.02	-	2.141	25.174	19.663

- Notes
 - Could be some features caused by physical proximity of objects in some modules
 - Cross-talk could also cause other features

Other Inputs to the Model

- DCDC Converter efficiency dependence on temperature, current
- <u>Readout chips affected by Total Ionizing Dose ("TID bump")</u>
- Flux and Total ionizing dose
- Operational profiles

Parameterizing DCDC Converter Efficiency

- DCDC converter efficienc
- Data measurements of ef for parameterized model
- When running the model exceeded

Input: TID Bump Characterization

- Chips (ABCs, HCCs) digital current is affected by Total Ionizing Dose "TID Bump"
- Parameterization shape picked to match data
- The scale of the bump depends on the <u>temperature</u> and <u>dose rate</u>
 - TID bump is bigger at <u>lower temperatures</u>
 - TID bump is bigger at <u>larger dose rates</u>
- Increase in current affects performance of DCDC converter, total EC power requirements, etc.
- Note that dose-rate dependence causes shifts in the timing of the peak

Modeling of Flux / Total Ionizing Dose

- Barrel: Flux and TID is relatively stable across horizontal staves
- Endcap: Large variations in flux and TID, so we model each module (36 total) with its own flux and TID

- $\bullet~$ Flux in the range 2–5 $\times 10^{14}~n_{eq}/cm^2$
- TID in range 4.7–22.7 kRad

K. Brendlinger

Operational Profiles

2

Λ

5 6 7 8 9 10 11 12 13 14

Model Outputs

K. Brendlinger

Analytic thermoelectric modeling of the ATLAS ITk strips – Valencia – June 26, 2018

24

Power and Temperature outputs, one Module

Endcap R3 Module Power Endcap R3 Module Temperature P [V T [°C] Sensor Q (one side) - ABC temperature 20 18 Flat -35° cooling scenario Flat -35° cooling scenario Power of HV resistors - HCC temperature Safety factors: none Safety factors: none Cumulative LV tape loss 16 LinPOL12V (for AMAC) FEAST temperature FEAST 10 EOS temperature HCC 14 ABC TID Bump Sensor temperature AMAC 12 Coolant temperature 0 End-of-life 10 -10 8 6 -20 4 -30 2 **P** 12 2 8 6 10 2 4 14 0 4 6 8 10 12 14 Time [years] Time [years]

- TID bump increases chip currents
- $\bullet \ \rightarrow$ lower DCDC efficiencies, more power in DCDC
- $\bullet \ \rightarrow$ higher temperatures in all components, sensor
- \rightarrow temperature-dependent TID bump decreases (damping effect)

K. Brendlinger

Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

Temperature and Sensor Q Headroom

- Sensor Q Headroom factor:
 - Sensor leakage power factor $Q_{\text{Max}}/Q_{\text{S}}$ before thermal runaway is reached
- Coolant temperature headroom factor:
 - Maximum coolant temperature before thermal runaway is reached

Scenario Comparisons – Safety Factors

- With the thermoelectric model, opportunity to compare different scenarios
 - E.g. update power/currents of components
 - Test different scenarios
 - Apply different safety factors (below)

- Module-level effects can be propagated, to model the full system
- Note that maximum power is not the sum of the individual module maxima (offset TID peaks)
- Can be used to understand requirements for e.g. cables, cooling system

Testing Different Coolant Temperature Scenarios

Endcap Thermal Impedances – First Results

Testing Different Cooling Temperature Scenarios

- Nominal coolant temperature scenario is -35°C
- Can try different cooling scenarios to optimize for certain effects:
- e.g. TID bump (~year 2) is mitigated with higher temperatures
- e.g. Thermal runaway (end-of-life) is avoided using lower temperatures

Test the effect on the endcap modules

Trying Different Temperature Scenarios (II)

keep sensor current < 2 mA at all times
 Note: Cannot expect perfect accuracy from type of tuning

K. Brendlinger

Input for Design Issues:

- Petal design with DCDC converter exceeding 4A maximum specification
- Input for chip designers to guide maximum allowable chip currents
- Avoiding scenarios with thermal runaway
- Choosing among materials with different thermal conductivity

Specifications:

- System-wide: Maximum power load on the cooling system
- Load on bus tapes (LV, HV)
- Load on LV and HV cables
- Etc.

Benefits of an analytic Thermo-electric model:

- Indispensable tool for understanding full detector system
- Qualitative understanding of module, detector operation
- Allows fast comparison of multiple scenarios, safety factors

Caveat / Reminder:

- Thermoelectric model is only as good as the inputs
- Important to understand the individual components of the module:
 - FEA Simulation
 - Data collection: chips, DCDC converters, regulators, etc.

BACKUP

Full Endcap FEA results, T_{Coolant}=30°C

K. Brendlinger

Analytic thermoelectric modeling of the ATLAS ITk strips - Valencia - June 26, 2018

35

Thermal properties input to the FEA - Endcap

	Table 2.3: Thermal pro			
Part or Interface	Material	$K_x/K_y/K_z$ [W m ⁻¹ K ⁻¹]	Thickness [mm]	Comment
ASIC	Silicon	191 (250K) - 148 (300K)	0.30	
ABC to Hybrid	UV cure glue	0.5	0.08	50% coverage
HCC to Hybrid	UV cure glue	0.5	0.08	75% coverage
Hybrid PCB	Cu/polyimide	72 / 72 / 0.36	0.2	
Power PCB	Cu/polyimide	120 / 120 / 3	0.3	
PCB to sensor	FH5313 Epolite	0.23	0.12	75% coverage
Sensor	Silicon	191(250K) - 148(300K)	0.3	
Sensor to Bus	DC SE4445	2.0	0.1 - 0.2	100% coverage
Bus tape	Polyimide/ Cu/Al	0.17 / 0.17 / 0.17	0.24	
Bus to facing	-	(idealised)	-	co-cured
CFRP Facing	0-90-0 CFRP	180/ 90 / 1	0.15	K13C2U fibre, 45 g/m ²
Facing to Foam	Hysol 9396 + graphite powder	1.0	0.1	
Graphite Foam	Allcomp, 2g.cm-3	30	5 mm (core)	
Foam to Pipe	Hysol 9396 + graphite powder	1.0	0.1	
Cooling Pipe	Titanium (grade 2)	16.4	0.14-0.15 (wall)	2 mm inner dia.
Fluid film	Bi-phase CO ₂	HTC 4.9 to 7.1 (at BoL) ^a [kW m ⁻² K ⁻¹]		simulated at -30 °C
Convection	Air	HTC 0 to [W n	adjusted to match	

Analytic thermoelectric modeling of the ATLAS ITk strips – Valencia – June 26, 2018

36

Endcap Temperatures, -35° C cooling scenario

K. Brendlinger

Endcap Thermal Impedances - First Results

Endcap Power and current, -35° C cooling scenario

K. Brendlinger

Endcap Thermal Impedances – First Results

Endcap – Other, –35° C cooling scenario

K. Brendlinger

First Endcap R_{cm} Results

K. Brendlinger

Endcap Thermal Impedances - First Results

40

Fitting for R_{cm}: Barrel Results (Short Strip)

- Barrel also checks Tape, HVMUX, and R_{HV} power sources
- R_{CM} is relatively linear in these cases; 10% safety factors are used for the Barrel

Fitting for R_{cm}: Barrel Results (Long Strip)

• Same story – fit is decent.

• CO₂ cooling loop (2PACL system)

43

