
Proposal/Ideas on how to evolve 
ROOT Data Management 

Facilities
Viktor Khristenko

I do apologize, slides are a bit convoluted. They are not meant as “presentation”,
But more for technical discussion/log book.



• DEEP– Extreme Scale Technologies

• R&D for Exascale HPC

• CERN / CMS is a collaborating partner

• European Project aiming to build Modular Supercomputing 
Architecture. Located at Juelich Supercomputing Center (JSC)

Integrating ROOT I/O with Apache Spark 2

The DEEP-EST Project



Main topics

• ROOT I/O 
• ROOT Serialization/Deserialization
• Tree, Forest



Motivation
• Heterogeneous Resources 

• My current activity revolves around porting CMS calorimeter local reco to OpenCL to use with FPGAs
• The same was already done for GPUs (with cuda)
• OBSTACLES: ugly to change/pack things for these archs

• Changing layouts…………
• A lot of data format changes / 

• Forest
• Google doc, and a question if Forest should apply to Experiments or just end-user analysis
• In my personal opinion, very tight similarity with Apache Arrow

• Inflexibility of existing ROOT I/O + Serialization/Deser interfaces
• In fact, they are totally collapsed right now.
• That goes back to modularity question.
• You do not need Interpreter to read/write ROOT Records (key + blob)/files,
• You need Interpreter to serialize/deserialize!



End User or Experiments

• I aim at Experiments, large scale data processing scenarios, usage of 
supercomputers, farms, clouds, you name it. 

• The important part here is that I’m interested to see how large scale 
data processing can be improved by improving data handling within 
ROOT!

• In the end, this is one of the most common/fundamental parts of 
data intensive workflows – how we handle data.



ROOT I/O

File Header

Tfile rpecification

Record 0
Top Record (Tkey + Tnamed + TDirectory)

Record 1

Record …

Record N

Typically, but not always at the end of Tfile:
Free Segments Record
Streamers Record
Can be at the end

Streamers Record is not at I/O
Level at all!!! It’s absolutely unnecessary
To have Streamers Record parsed for dealing with 
ROOT I/O. IN fact, none of the ROOT I/O primitives are in the Streamers Record themselves!!!

20180518/152630 At:23301 N=51 TDirectory
20180518/152630 At:23352 N=51 TDirectory
20180518/152630 At:23403 N=716 TDirectory
20180518/152630 At:24119 N=742 KeysList
20180518/152630 At:24861 N=3039 StreamerInfo CX = 3.04
20180518/152630 At:27900 N=83 FreeSegments
20180518/152630 At:27983 N=1 END 

_file0->Map()

At: 23352 N: 51 TDirectory CX = 1.00
At: 23403 N: 716 TDirectory CX = 1.00
At: 24119 N: 742 TFile CX = 1.00
At: 24861 N: 3039 TList CX = 3.08
At: 27900 N: 83 TFile CX = 1.00

My reimplementation of root i/o in c. just example

Record
- Key
- Blob



ROOT I/O + Serialization / Deserialization
• Basically a single Record is read/written

• A TTree essentially has a track of all of 

the positions of all Records (for the data 

stored in TTree) 

• I define the ending point of ROOT I/O to 

be the moment we have put a record 

into memory of a single node

• Read from local disk

• Brought in over the network

• whatever

20160609/091740 At:607828438 N=130692 TBasket CX = 6.04

20160609/091740 At:607959130 N=317412 TBasket CX = 2.49

20160609/091740 At:608276542 N=202800 TBasket CX = 3.63

20160609/091740 At:608479342 N=562351 TBasket CX = 1.58

20160609/091740 At:609041693 N=526935 TBasket CX = 1.69

20160609/091740 At:609568628 N=179014 TBasket CX = 4.96

20160609/091740 At:609747642 N=272504 TBasket CX = 3.26

20160609/091740 At:610020146 N=540469 TBasket CX = 1.64

20160609/091740 At:610560615 N=536728 TBasket CX = 1.66

20160609/091740 At:611097343 N=556444 TBasket CX = 1.60

20160609/091740 At:611653787 N=558017 TBasket CX = 1.59

20160609/091740 At:612211804 N=542522 TBasket CX = 1.64

20160609/091740 At:612754326 N=564499 TBasket CX = 1.57

20160609/091740 At:613318825 N=133713 TBasket CX = 6.64



ROOT Serialization / Deserialization
• In spark-root I basically implemented ROOT serialization/deserialization of 

baskets without any code generation of the logic. 

• I define serialization/deserialization to be the procedure to interpret a binary 
blob in memory as some typed c++ / whatever object.



ROOT I/O + Serialization / Deserialization

• When people say ROOT I/O, they mean both I/O and 
serialization/interpretation

• ROOT essentially collapses these two completely independent parts.
• But u can use TX::Streamer method to get just ser/deser

• ROOT has a notion of a type system -> c++ type system. However, 
most of that can be drilled down even further. Next slides



What I propose

File Header

Record 0
Top Record (Tkey + Tnamed + TDirectory)

Record 1

Record …

Record N

ROOT I/O

List

Struct

Struct Struct
int

List

intflo
at

flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

A Record will contain
- Key 
- Buffer of simple type

- Corresponds to either buffer of offsets or leaf nodes types
For instance, Buffer of a float leaf will be compressed and a record 
Created.

In Memory Model



File Header

Record 0
Top Record (Tkey + Tnamed + TDirectory)

Record 1

Record …

Record N

ROOT I/O

List

Struct

Struct Struct
int

List

int
flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

In Memory Model

Layer 1 -> ROOT Records
Layer 2 -> ROOT Memory Model using a common expressive enough type system (not full c++, 
but preserve c++ type system as well!)
Do not build General Purpose Classes until 
It is explicitly requested (configurable… obviously)
Layer 3 -> Representation (can be general purpose classes like what
Experiments have now). The point is that you do not build them until requested to.



File Header

Record 0
Top Record (Tkey + Tnamed + TDirectory)

Record 1

Record …

Record N

ROOT I/O

List

Struct

Struct Struct
int

List

int
flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

In Memory Model

Essentially, this is what Forest, Apache Arrow do right now. Both provide essentially the 
Same Memory Model

Why beneficial?! Experiments when porting things to heterogenous archs
Do not need the deserialization step to be done at all on a cpu!!! 
You need this vector form!



What I propose
• Provide a clear boundary between I/O and serialization/interpretation

• Establish a common type system and preserve c++ at the same time

• Employ Apache Arrow or something like that for the memory layout layer. See in the next slides

• code generation (may be compile time or may be run time) of interpretation of Memory Model 

into General Purpose Objects, that are necessary for Experiments…. There is no way to go around 

this…

• For instance, for GPUs, we do not need ROOT to run deserialization into general purpose 

std::tuple<int, double, std::vector<int>> etc…. So that I then transfer something to the device. You 

already have a vectorized form for every leaf of the type tree.



Apache Arrow

• https://arrow.apache.org/docs/memory_layout.html
• It’s a memory layout, it’s not another parquet/data storage format 

• It is a thorough specification of how data to be laid out in memory 
• It is expressive enough to support a form of polymorphism.
• When doing parsing of CMS RECO/AOD Streamer record, you can see that the 

number of times we parse pointers of polymorphic things is quite small w.r.t. the 
cases of things that are really known beforehand.

• Here I just want to show how I view Apache Arrow

• Let’s build a simple example that showcases how
• given general purpose typical HEP memory layout
• generate Apache Arrow
• Get general purpose back

https://arrow.apache.org/docs/memory_layout.html


Apache Arrow
Particle class declaration/definition

Generate
Std::vector<std::vector<particle>>
A la events/rows of list of particles



Apache Arrow – Convert Row based to Arrow 
Arrays Define all Arrow Array Builders

Actual Conversion



Apache Arrow – a memory model + type 
system

std::vector<std::vector<particle>>
A la events/rows of list of particles

List

Struct

Struct Struct
int

List

intflo
at

flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

Array of offsets
Null bit map

Array of offsets
Null bit map

Array of ints

Array of ints

Array of
floats Array of floats Array of floats Array of floats

Array of floatsArray of
floats

Array of 
floats



Apache Arrow – Convert Arrow Arrays to Row 
based Get all Arrow Arrays Build row based representation



What I propose
• Provide a clear boundary between I/O and serialization/interpretation

• Establish a common type system and preserve c++ at the same time
• Apache Arrow defines a good enough to start type system
• We already have mechanisms to preserve c++ type system (schema) - streamers

• Employ Apache Arrow or something like that for the memory layout layer. Testing in the next slides

• Code generation/use of interpreter for reinterpretating into a representation that a user needs. See 
next slides
• At compile time, similar to how ROOT generates code for serialization/deserialization (gen reflex, rootcling…), 

generate code to interpret Apache Arrow Arrays as row based user defined stuff.

• The idea is to build on top of what rootcling provides but instead of current way of doing deser/ser, 
employ a memory model + allow this reinterpretation into a user representation to be done on 
demand
• For architectures like GPUs, we do not need deserialization step at all!
• We could help experiments by providing this memory model + on-demand deserialization.



Quick test of Apache Arrow -> root 
integration
• I want to take arrow::Array and read/write that to ROOT file
• Write functionality sufficient to store the above example :
• https://github.com/vkhristenko/test-apache-arrow/tree/master/root-arrow

• Similar logic as for TTree
• Just a couple days of evening time

https://github.com/vkhristenko/test-apache-arrow/tree/master/root-arrow


vk@viktors-MacBook-Pro:~/software/test-apache-arrow/build$ root -l test.root
root [0]
Attaching file test.root as _file0...
Warning in <TClass::Init>: no dictionary for class ROOT::RArrowInterface is available
Warning in <TClass::Init>: no dictionary for class ROOT::RLink is available
(TFile *) 0x7fa1c81c4010
root [1] _file0->Map()
20181025/235155 At:100 N=114 TFile
20181025/235155 At:214 N=73 CX = 0.40
20181025/235155 At:287 N=193 CX = 0.15
20181025/235155 At:480 N=193 CX = 0.15
20181025/235155 At:673 N=193 CX = 0.15
20181025/235155 At:866 N=193 CX = 0.15
20181025/235155 At:1059 N=193 CX = 0.15
20181025/235155 At:1252 N=193 CX = 0.15
20181025/235155 At:1445 N=193 CX = 0.15
20181025/235155 At:1638 N=193 CX = 0.15
20181025/235155 At:1831 N=197 CX = 0.15
20181025/235155 At:2028 N=1013 CX = 0.03
20181025/235155 At:3041 N=318 ROOT::RArrowInterface CX = 1.41
20181025/235155 At:3359 N=771 StreamerInfo CX = 1.71
20181025/235155 At:4130 N=129 KeysList
20181025/235155 At:4259 N=53 FreeSegments
20181025/235155 At:4312 N=1 END

Entry record

All the data record
A la Baskets

Just to note, that data is there,
But I’m not sure how to trigger 
compression



Algorithm

List

Struct

Struct Struct

int

List

int
flo

at

flo

at

flo

at

flo

at
flo

at

flo

at

flo

at

Array of offsets

Null bit map

Array of offsets

Null bit map

Array of ints

Array of ints

Array of

floats
Array of floats Array of floats Array of floats

Array of floatsArray of

floats

Array of 

floats

- For each node:

1. Create a link for meta

1. Type name 

2. Record position within a Tfile

2. Create a data record

1. Key

2. Buffer of simple type! Arrow 

already gives us that… (I left 

as Little Endian)

Test impl is here:

https://github.com/vkhristenko/test-apache-arrow/blob/master/root-arrow/src/RVisitors.cpp#L53



What I propose

File Header

Record 0
Top Record (Tkey + Tnamed + TDirectory)

Record 1

Record …

Record N

ROOT I/O

List

Struct

Struct Struct
int

List

intflo
at

flo
at

flo
at

flo
at

flo
at

flo
at

flo
at

A Record will contain
- Key 
- Buffer of simple type

- Corresponds to either buffer of offsets or leaf nodes types
For instance, Buffer of a float leaf will be compressed and a record 
Created.



What I propose – memory model + on 
demand reinterpretation
• Introduce a memory model (like Forest, but we already have Apache Arrow, I can extend 

my quick prototype to fully read/write -> need a bit of help with Tkey… for now I did a 
trivial thing like Tbasket does… but something is off…)

• We already do the same but for ROOT’s own layout of binary buffers.

• For archs, other than x86 like ones, vector machines… for instance, we do not need the 
deserialization step. 

• Experiments will further go into this direction, at least we can provide a way to help 
them
• in my view this memory model is a substantial help, cause i do not have to go in and try to change 

the existing data formats………. which is what I have to do now… in order to put stuff on a device.
• Integration -> if people need general purpose -> on demand deserialize/reinterpret.



What I propose - reinterpretation

• Given experiments want to utilize heterogenous resources, current 
row based layouts are not good………
• Moreover, most of the time, you do not need to ship the whole object 

to the e.g. GPU, only some fields



Why this way

• This would all allow us to integrate into current codebase with ROOT I/O 

• Provide an interface for general purpose computations as well, since in many 
cases that is what experiments need

• Skip deserialization step when it’s not needed

• Integrate with other open source initiatives, for instance the development of 
LLVM based compiler to execute analytics directly on Apache Arrow Arrays

• And more…



Why do I want to collaborate

• Genreflex/rootcling
• Dictionary generation is difficult
• Source code base is quite large…. I checked
• I want to build on top of root already provides with dictionary generation

• Goes hand in hand with what Forest is trying to do
• In my opinion

• See next



Prototype for CMS

• Here is a proposal for a prototype… 
• Consider CMS core framework

• First, implement the memory model concept and required code 
generation/interpretation

• Integrate with the existing cmssw framework
• Provide preliminary tests on dummy workloads
• Integrate with real reco workflows

• Cpu / gpu

• This could further generalize to the rest of experiments and what ROOT will provide is 
foundation (memory model + general purpose class assembly + on demand) + different 
layers of abstractions on top.



Prototyping, or these are just thoughts

• I’m experimenting with Apache Arrow 
• https://github.com/vkhristenko/test-apache-arrow
• Complex enough, similar to what experiments have as collection of particles
• A quick recipe to store apache arrow arrays in TFile

• I’ve reimplemented ROOT I/O (in my sense) in c
• https://github.com/vkhristenko/rootio
• Only with hdfs + local fs (read/write).

• Want to extend to use mmap + eos integration
• Can use ROOT to deserialize and write using my implementation
• For now, record for streamers is empty (key + empty TList)

• To read back in ROOT need to set a static field of TFile::SetReadStreamerInfo(false)
• This is experimentation/testbed/playground, not aiming anywhere except testing for now.

• Bindings for python, rust, cpp { ctype, cffi }
• read/write of records

https://github.com/vkhristenko/test-apache-arrow
https://github.com/vkhristenko/rootiobootstrap


Attract Proposal
• HIOS: Heterogenous I/O for Scale

• Objective: Remove the I/O + Compression/Decompression specific functionality 
from the host to an FPGA on the cluster.

• Within the DEEP-EST Project, we have NAM
• Network Attached Memory 

• https://www.deep-projects.eu/hardware/memory-hierarchies/49-nam
• FPGA with HMC (DDR4) for several TBs per board
• Right now can malloc/free from the host

• Proposal is to repurpose this board slightly

https://www.deep-projects.eu/hardware/memory-hierarchies/49-nam


Current usage of NAM
Host NAM

Data Lake:
S3, ceph, EOS, 
various remote 
storage facilities

Local Cluster



Foreseen usage of X

Host X

Data Lake:
S3, ceph, EOS, 
various remote 
storage facilities

Local Cluster



Foreseen usage of X

Host 1

X 1

Data Lake:
S3, ceph, EOS, 
various remote 
storage facilities

Host 2

…

Host N

…

X N

Local Cluster



Attract Proposal
• HIOS: Heterogenous I/O for Scale

• Why not offload I/O specific logic from the host? 
• Read/Write is quite an important part of all of our workflows.

• Coding/Decoding of ROOT I/O logic
• Would allow to use less RAM on the compute host
• Decompression/Compression of Baskets/Binary Blobs could be also done on the board.

• HPC centers
• Would allow to use compute units by data intensive applications w/o really changing the 

host
• Would allow to utilize the expensive links….



Pure ROOT I/O
• I rewrote the ROOT I/O only part in c so that if ATTRACT is there, I’m ready to put that 

logic in on that board…

• However, during the ROOT User Workshop there was a question of how to integrate 
uproot with current root. And this also applies in there
• If we have a pure well-optimized ROOT I/O for different ways of getting binary blob to a compute 

unit.

• Uproot can take advantage of various things python provides for reinterpretation. Other people 
could potentially build on top of that.

• Go impl does not need to be standalone, but can utilize the I/O and reinterpret binary buffers 
whichever they want

• This is not about the language -> it is about ”systematic/architectural/modular approach” which 
could also enable more people to contribute.

• Futuristic but, Philippe said back at the workshop “the age of posix i/o comes close to an end”. 
What I’m interested to see is we can also go and influence the future of how I/O is handled. 
Especially given that I/O is fundamental for data intensive workflows.


