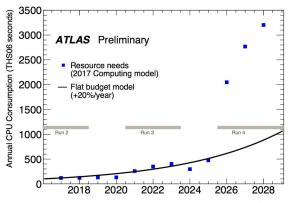
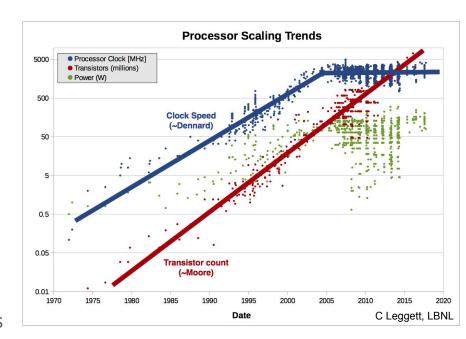

# Software Working Group Introduction




Graeme Stewart (co-convenor Jakob Blomer)

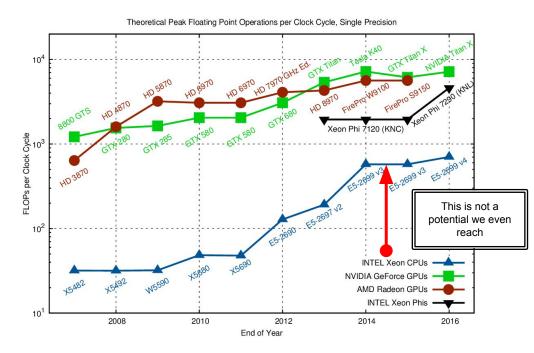
# Challenges to the HL-LHC and beyond


- High-Luminosity LHC is far from being a solved problem for software and computing
  - Naive extrapolation from today is not affordable
- Beyond HL-LHC, there are a number of different options for new machines
  - Lepton colliders (ILC, CLIC, FCC-ee) have overall less serious computing challenges
    - Require performant, robust, easy to use/deploy software
  - Hadron colliders (HE-LHC, FCC-hh) bring a massive data rate and complexity problem
    - Extreme for everything: generators, simulation, reconstruction, analysis
- Whatever the future, we pass through the HL-LHC on the way
  - o <u>HEP Software Foundation Community White Paper</u> maps out that path



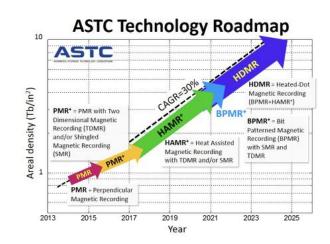


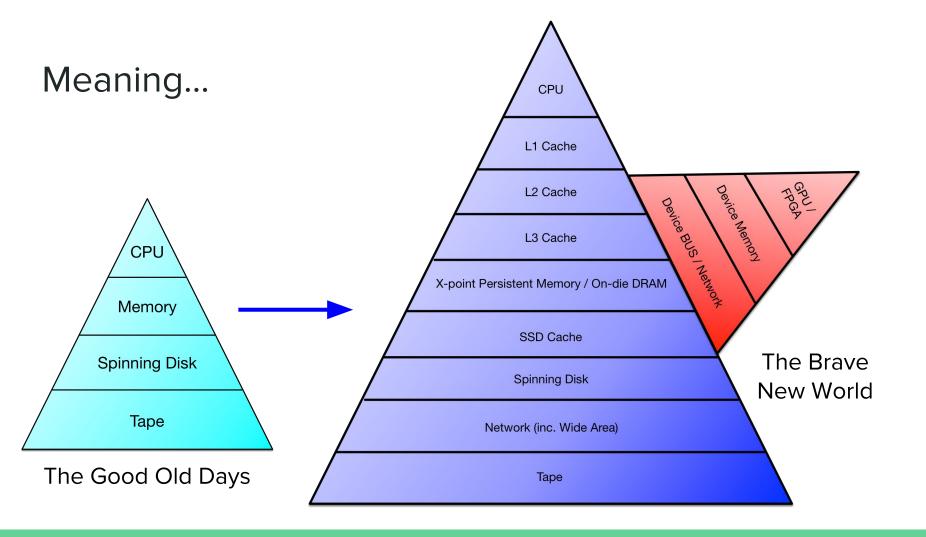
#### Processor evolution


- Moore's Law continues to deliver increases in transistor density
  - Doubling time is lengthening
- Clock speed increases stopped around 2006
  - No longer possible to ramp the clock speed as process size shrinks (Dennard scaling failed)
- So we are basically stuck at ~3GHz clocks from the underlying Wm<sup>-2</sup> limit
  - This is the *Power Wall*
  - Limits the capabilities of serial processing
  - CPU based concurrency still in development for Run 3



# Compute Accelerators


- Most of the CPU die goes to things other than doing maths
  - Even CPU vector registers are hard for us to exploit
- Accelerators have a different model
  - Many cores, high floating point throughput, but lose a lot of 'ease of use'
- We have to adapt to maintain our ability to use processors effectively






# Other Technology Trends

- Memory
  - DRAM improvements now modest
  - Overall, memory 'landscape' becomes more complex
    - Memory/storage boundary blurring
- Storage
  - Spinning disk capacity keeps climbing
    - Time to read and cost improves, but slowly
  - SSDs can read much faster, but price remains too high for bulk storage
  - Tape remains cheap to buy, slow to access with few companies left, O(1)
- Networks
  - Capacity increases expected to continue, latency will not change
  - Next generation networks offer capability to open channels between sites on demand
    - Useful, but an additional complexity
- Note: Game changer technologies might appear, but we cannot count on them





# Software needs and challenges

Goal: **ambitious** and **focused** work programme with milestones, deliverables and resource estimates

- Evolution and management of massive code bases created over many years
  - Current software is the base from which we design future detectors
- Meet the software challenges of future experiments
  - Very complex events hard for reconstruction in particular
  - High rates efficient, high speed data reduction pipelines
  - Huge volume massive scale data and processing management
- Landscape for software becomes more varied
  - No more 'free lunch' from Moore's Law
  - Harder to exploit hardware need to adapt to accelerators and deep technology stack for data flow
- Advances from other fields offer promise, but need adapted
  - Data science and concurrency tools
- These are not problems that can be solved without investment
  - Software R&D program, running alongside detector R&D itself
  - Expect 5 years for advanced prototypes, deployment in 10 years

## Software working group

#### Open process

- Gather ideas from the whole of the HEP software and computing community
- Ensure alignment with developments outside CERN EP
- 100 people on the <u>mailing list</u>

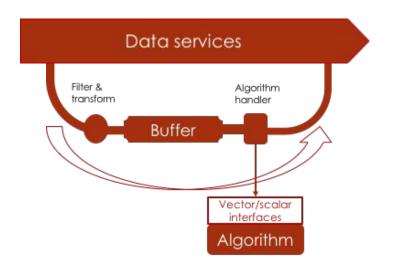
#### Lightning Talks

- $\circ$  Two sessions of lightning talks [1, 2] open to anyone to propose a topic
- Total of 28 short talks presented and discussed
  - Speakers from CERN EP and beyond

#### Core group

- Formed to distill these ideas and guide us towards R&D proposals
- 15 people (LHC Experiments, CLiC, FCC, SFT, CERN IT)

# Lightning talks


- Simulation for future experiments
- Reconstruction challenges for trackers and calorimeters
- New scalable analysis models
- Applied machine learning
- Tools for concurrency on heterogeneous resources
- Exabyte data flow and data management
- Support for new architectures and SoC systems
- Software integration

Big thanks to all the contributors!

| Title                                                                                               | Author                     | Challenge Area |      |                |          |          |       | Solution Technology          |                 |                |                      |         |         |       |
|-----------------------------------------------------------------------------------------------------|----------------------------|----------------|------|----------------|----------|----------|-------|------------------------------|-----------------|----------------|----------------------|---------|---------|-------|
|                                                                                                     |                            | Simulation     | траа | Reconstruction | Analysis | Facility | Other | Concurrency and Accelerators | Machine Learing | Caching Layers | Advanced<br>Networks | Storage | Turnkey | Other |
| New Approach for ATLAS Detector Geometry<br>Modelling                                               | Alexander Sharmazanashvili |                |      |                |          |          | x     |                              |                 |                |                      |         |         |       |
| Software Defined and Named Data Networking, and the Consistent Operations Paradigm                  | Harvey Newman              |                |      |                |          | x        |       |                              |                 |                | x                    |         |         |       |
| VectorFlow, a subscription-based vector data-shipping service                                       | Andrei Gheata              | ×              |      | x              |          |          |       | x                            |                 |                |                      |         |         |       |
| Future technologies for efficient and light-weight handling of non event data                       | Gianluca Cerminara         |                |      |                |          | x        | x     |                              |                 | x              |                      |         |         |       |
| Filesystem-less high performance I/O of HEP Data                                                    | Danilo Piparo              |                |      |                | X        | X        |       |                              |                 |                |                      | X       |         |       |
| Track Reconstruction in a Concurrent world                                                          | Andreas Salzburger         |                |      | x              |          |          |       | x                            |                 |                |                      |         |         |       |
| Machine Learning technologies applied to online event selection                                     | Maurizio Pierini           |                | x    |                |          |          |       |                              | x               |                |                      |         |         |       |
| Machine Learning for Fast Simulation                                                                | Sofia Vallecorsa           | x              |      |                |          |          |       |                              | X               |                |                      |         |         |       |
| Automation of Data quality and certification with<br>Deep Learning                                  | Giovanni Franzoni          |                | x    |                |          |          |       |                              | x               |                |                      |         |         |       |
| Software for Detector Optimisation Studies in<br>EP-LCD                                             | Marko Petric               |                |      |                |          |          | x     |                              |                 |                |                      |         | x       |       |
| Turnkey software solutions                                                                          | Benedikt Hegner            |                |      |                |          |          | x     |                              |                 |                |                      |         | X       |       |
| High throughput data analysis on future heterogeneous platforms                                     | Danilo Piparo              |                |      |                | x        | x        |       | x                            |                 |                |                      |         |         |       |
| Heterogeneous computing                                                                             | Felice Pantaleo            |                |      |                |          | x        |       | x                            |                 |                |                      |         |         |       |
| Browser as a platform / compute device                                                              | Jakob Blomer               |                |      |                |          |          | x     |                              |                 |                |                      |         |         | x     |
| Machine Learning to empower physics modeling                                                        | Marilena Bandieramonte     | x              |      |                |          |          |       |                              | x               |                |                      |         |         |       |
| Handling inference efficiently in online/offline reconstruction software                            | Vincenzo Innocente         |                |      | x              |          | x        |       |                              | x               |                |                      |         |         |       |
| Preparing for our Exascale data management challenge                                                | Mario Lassnig              |                |      |                |          | x        |       |                              |                 | x              | x                    | x       |         |       |
| Rethinking Data Center Computing                                                                    | Giulio Eulisse             |                |      | x              | x        | x        |       | x                            |                 |                |                      |         |         | x     |
| Embedded Linux for Run Control and ARM porting                                                      | Ralf Spiwoks               |                | x    |                |          |          |       |                              |                 |                |                      |         | x       |       |
| Example of an embedded Linux Operating System and System-On-Chip based platform in the DAQ use case | Adrian Fiergolski          |                | x    |                |          |          |       |                              |                 |                |                      |         | x       |       |
| To boldly go Application deployment frameworks for new computing environments                       | Radu Popescu               |                |      |                |          | x        |       |                              |                 |                |                      |         |         | x     |
| Future Distributed Analysis of HEP Data                                                             | Enric Tejedor Saavedra     |                |      |                | x        |          |       |                              |                 |                |                      | x       | X       |       |
| Machine learning solutions for simulation and reconstruction of highly granular calorimeters        | Jan Kieseler               |                |      | x              |          |          |       | x                            |                 |                |                      |         |         |       |
| APPAVO - Augmented tools for Particle Physics<br>Analysis, Visualisation and Outreach               | Eduardo Rodrigues          |                |      |                | x        |          | x     |                              |                 |                |                      |         |         | x     |
| Development of a histogram library for concurrent programming                                       | Andrea Bocci               |                | x    |                |          |          |       | x                            |                 |                |                      |         |         |       |
| Clustering and Tracking with GPUs and machine learning                                              | David Rohr                 |                |      | x              |          |          |       | x                            | ×               |                |                      |         |         |       |
| Browser Based Detector Displays for Outreach & Education                                            | Alexander Sharmazanashvili |                |      |                |          |          | ×     |                              |                 |                |                      |         |         | x     |
| tkLayout                                                                                            | Stefano Mersi              |                |      |                |          |          | x     |                              |                 |                |                      |         | x       |       |

# One Lightning Example - VectorFlow

- Vectorisation is great when it happens, but difficult to achieve with our codes today
  - Problem is how to gather appropriate data and fill vector registers with it
    - Does not happen naturally for event by event processing
  - Gather data into a processing buffer from many places
  - Process through an algorithm that has a vectorised interface
- R&D on
  - Concurrency and performance effectiveness
  - Using vectorisation primitives in new areas
  - Integration into existing frameworks
  - Offloading into accelerators
- Adapting to new hardware is difficult work and dedicated expertise is needed to bridge between physics and software



### EP department - a centre for software excellence

- Very strong software groups in current and future experiments
  - Including Phase II upgrades
  - Frameworks, Tracking, Data Quality, DAQ and Data Flow, Databases, Detector Description
- Key contributor to core HEP libraries
  - ROOT
  - Geant4
- Central role in distributed data management software and operations
  - Data Management and Workload Management
  - Large resource operations management: Trigger Farms, Tier-0s
  - CVMFS
- Close to CERN IT
  - WLCG operations and developments
  - Critical expertise in technology tracking
- Key player in community initiatives through <u>HEP Software Foundation</u>

Many projects now picked up more widely than at LHC - a success!

# Today's talks

- Future Tracking
  - A key unsolved problem for future experiments
- Machine Learning
  - Applied data science and how it can be used in HEP
- End to End Physics
  - Software and data flow solutions for the exabyte era

These are not presented here as concrete R&D proposals, but as samples of some of the most interesting challenges and ideas from the problem and solution space

# Backup

# Software Working Group Core Team

| Jakob Blomer (Convener)                  | Danilo Piparo (ROOT, Concurrency)         |  |  |  |  |  |  |
|------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| Graeme Stewart (Convener)                | Witek Pokorski (Geant, Generators)        |  |  |  |  |  |  |
| Marco Cattaneo (LHCb)                    | Radu Popescu (Other languages)            |  |  |  |  |  |  |
| Dirk Duellmann (IT expertise and link)   | André Sailer (CLiC, LCD)                  |  |  |  |  |  |  |
| Benedikt Hegner (FCC)                    | Andreas Salzburger (ATLAS, FCC, Tracking) |  |  |  |  |  |  |
| Mario Lassnig (ATLAS, Data Management)   | Niko Neufeld (LHCb, DAQ, FPGAs)           |  |  |  |  |  |  |
| Maurizio Pierini (CMS, Machine Learning) | David Rohr (ALICE, GPUs)                  |  |  |  |  |  |  |
| Helge Meinhard (IT R&D)                  |                                           |  |  |  |  |  |  |