

Images:

actor 10 increase in readout rate from 1kHz to 10 kHz only partly compensated by hardware speedup

Track reconstruction Extrapolation HL-LHC

Track reconstruction Extrapolation HL-LHC / FCC-hh

Risks & Gains

Risk is high

- we *risk* physics potential if we do not solve this solve this
- e.g. current LHC analyses saw already the advent of MC statistic limits for certain analyses

Gains are high

Substantial R&D is needed several areas:

Code optimization algorithmic R&D

(low n) Concurrency

Hardware acceleration

Machine Learning

- great in-house expertise at CERN that can be fostered
- symbiotic projects with detector R&D, computing & machine learning
- exciting times for software and algorithm design
- strengthen CERN as excellence lab for software

Code optimization

algorithmic R&D

Concurrency

Hardware acceleration

Machine Learning

Community driven common software for track reconstruction

- cutting edge algorithmic solutions for "classical pattern recognition" preserving the excellent performance (physics & failure rate) of LHC experiments
- expert driven code optimization (strong link to SW R&D)

Common effort of online and offline reconstruction software

- incentives towards tracking at L1 trigger level / trigger-less readout

Inclusion of timing information in track finding & fitting

- synergies with detector R&D for timing detectors

On demand track reconstruction

- region or physics driven reconstruction setups

Overall need for an R&D platform for track reconstruction

algorithmic R&D

Concurrency

Hardware acceleration

Machine Learning

Adapt track reconstruction for concurrent execution

- needs substantial work on current algorithms, data structures and data flows (vectorization)

Uncertainty in hardware market

- prepare flexible toolkits that allow adaption to several concurrency scenarios

Image:

Possible parallel track reconstruction concept based on detector regions

parallel reconstruction merging

output container

Example:

ACTS

Code optimization

algorithmic R&D

Concurrency

Hardware acceleration

Machine Learning

GPUs in track reconstruction

- several areas where GPUs could be effectively used
- GPUs work extremely well for certain algorithms/data flow e.g. clustering, cellular automaton, hough transform, Kalman filter
- Machine learning applications are "designed" for GPUs

Use of FPGAs and associative memory in track reconstruction

- particular in trigger

Examples:

CMS cellular automaton on GPUs Clustering & Tracking GPUs/ML

Traditional path to track finding (left),
GPU enabled path directly on charge input (right)

Code optimization

algorithmic R&D

Concurrency

Hardware acceleration

Machine Learning

Clustering hits together is typical 'unsupervised learning'

- take advantage of the recent advances in the field integrate into current track reconstruction software stacks

Convolutional/Recurrent Neural Networks (CNNs/RNNs)

Image:

Recurrent Neural network for prediction via Long Short Term Memory (LSTM)

Examples & more information:

See talk by Maurizio CERN co-organized, Tracking Machine Learning Challenge (Apr 2018)

Summary

Track reconstruction for next luminosity frontier

Achieving this will gain great physics potential, though requires

- R&D in all of these areas
- preserve the excellent LHC physics performance of track reconstruction
- foster and strengthen in-house expertise
- work closely with and alongside detector R&D lines
- profit from, coordinate with and participate in ML R&D
- strengthen common, community-driven and open software

Backup

HL-LHC CPU extrapolation

Based on ATLAS ITk estimates

- similar picture for CMS

