
RUN-1

RUN-2

<5>

<40>

<200>

<1000>

HL-LHC

FCC-hh R&D for Future Tracking

A. Salzburger (CERN)

Images:
(left) longitudinal views of vertex region 
 for various scenarios
(right) ALTAS Run-2 CPU scaling with <µ>

Future Tracking -

Track reconstruction Extrapolation HL-LHC

2
<µ> = 200

Finding of particle trajectories
- combinatorial problem to solve
- highly non-linear scaling of CPU time 

with increasing event complexity
- dominant CPU consumer

Naive extrapolation of LHC detector

- full reconstruction

- ATLAS/CMS & software designed for <µ>~23

Current numbers for HL-LHC detector

- track reconstruction only

- detector designed for <µ>=200
- current software adapted/optimized for this environment

Fa
ct

or
 1

0
in

cr
ea

se
 in

 re
ad

ou
t r

at
e

fro
m

 1
kH

z
to

 1
0

kH
z

on
ly

pa
rtl

y
co

m
pe

ns
at

ed
 b

y
ha

rd
wa

re
 s

pe
ed

up

tim
e

Future Tracking -

Track reconstruction Extrapolation HL-LHC / FCC-hh

3
<µ> = 200 <µ> = 1000

Super-naive extrapolation
of LHC detector

?What is possible

- need framework for detector  
 design, performance studies
 and further software R&D

tim
e

tim
e

Future Tracking -

Risks & Gains

4

Risk is high
- we risk physics potential 

if we do not solve this solve this
- e.g. current LHC analyses saw  

already the advent of MC 
statistic limits for certain analyses

Substantial R&D is needed several areas:

- great in-house expertise at CERN that can be fostered
- symbiotic projects with detector R&D, computing & machine learning
- exciting times for software and algorithm design
- strengthen CERN as excellence lab for software

Gains are high

Image:
Tracking ML detector simulated with ACTS
fast simulation in a <µ>=1000 scenario

algorithmic
R&D

(low n)
Concurrency

Hardware
acceleration

Machine
Learning

Code
optimization

Future Tracking -

Track reconstruction R&D

5

algorithmic
R&D Concurrency Hardware

acceleration
Machine
Learning

Community driven common software for track reconstruction
- cutting edge algorithmic solutions for “classical pattern recognition”

preserving the excellent performance (physics & failure rate) of LHC experiments
- expert driven code optimization (strong link to SW R&D)

Common effort of online and offline reconstruction software
- incentives towards tracking at L1 trigger level / trigger-less readout

Inclusion of timing information in track finding & fitting
- synergies with detector R&D for timing detectors

On demand track reconstruction
- region or physics driven reconstruction setups

Overall need for an R&D platform for track reconstruction

Code
optimization

Future Tracking -

Track reconstruction R&D

6

algorithmic
R&D Concurrency Hardware

acceleration
Machine
Learning

Code
optimization

blue thread

red thread

output container

merging

parallel reconstruction

Adapt track reconstruction  
for concurrent execution

- needs substantial work 
on current algorithms, 
data structures and data  
flows (vectorization)

Uncertainty in hardware market
- prepare flexible toolkits that allow  

adaption to several concurrency scenarios

Example:
ACTS  
https://indico.cern.ch/event/699252/contributions/2881457/attachments/1594869/2525543/2018-02-05-ACTS-Lightening.pdf

Image:
Possible parallel track reconstruction 
concept based on detector regions

https://indico.cern.ch/event/699252/contributions/2881457/attachments/1594869/2525543/2018-02-05-ACTS-Lightening.pdf

Future Tracking -

Track reconstruction R&D

7

algorithmic
R&D Concurrency Hardware

acceleration
Machine
Learning

Code
optimization

GPUs in track reconstruction
- several areas where GPUs could 

be effectively used
- GPUs work extremely well for 

certain algorithms/data flow
e.g. clustering, cellular automaton,
hough transform, Kalman filter

- Machine learning applications are
“designed” for GPUs

Use of FPGAs and associative
memory in track reconstruction

- particular in trigger

Examples:  
CMS cellular automaton on GPUs
Clustering & Tracking GPUs/ML
https://indico.cern.ch/event/702570/contributions/2905391/attachments/1606480/2549157/2018-02-26_CERN_RnD_Proposal.pdf

(d)

(a)

(b)

(c)

(a)

(d)

clustering
finding
fitting

classifying

GPU

Image:
Traditional path to track finding (left),
GPU enabled path directly on charge input (right)

https://indico.cern.ch/event/702570/contributions/2905391/attachments/1606480/2549157/2018-02-26_CERN_RnD_Proposal.pdf

Future Tracking -

Track reconstruction R&D

8

Clustering hits together is typical ‘unsupervised learning’
- take advantage of the recent advances in the field

integrate into current track reconstruction software stacks

Convolutional/Recurrent Neural Networks (CNNs/RNNs)

Figure 1. A possible interpretation of convolutional neural networks applied to 2D tracking data.

attention mechanisms [16–18], giving the models the capability to focus on particular parts of the
input or intermediate feature representations to produce a desired output.

Such rich learned representations have also proven highly beneficial for tracking-based problems
in non-HEP applications, such as sports analytics and computational neuro-science. For instance,
[19] uses attention-based LSTMs to learn hierarchical models of basketball player behavior from
tracking data, while [20] applies recurrent neural networks to generate realistic fruit-fly behavior and
handwriting.

4 Datasets

Simple toy datasets were used to study and demonstrate the ideas discussed in this paper. The "detec-
tors" are made of perfect pixel planes in 2D or 3D. Tracks are sampled from straight lines contained
within the detector volume, and binary hits are recorded in each intercepting discrete pixel on each
layer. No trajectory curvature, material effects, or detector inefficiencies are modeled. These toy
datasets are highly simplistic compared to real tracking detector data, which means that quantitative
results are likely not indicative of algorithm performance in realistic scenarios. Nonetheless, this sim-
ple toy data provides a useful environment to test out various models. Figure 2 shows example 2D
data generated with tracks as well as uniform noise. Figure 3 shows an example 3D event.

For the experiments described in section 5, the following data configurations were used. 2D toy
experiments used one million 2D events with 50 detector layers of 50 pixels each, one signal track,
and five background tracks for training. The 3D toy experiments used a detector with 10 layers and
50 × 50 pixels in each layer. Events were generated with a random number of background tracks
sampled from a Poisson distribution with mean values varied from 1 to 100. At each point, five
million events were generated for training and one hundred thousand events for testing.

5 Track finding with LSTMs and CNNs

The goal of this line of study is to identify models which can do the assignment of pixel hits to a track
candidate by extrapolating from a partial track (a seed) through detector layers. When considering a
single track at a time, the problem can be formulated as one of multi-class classification. The pixels in
one detector layer make up the possible "classes", and the model must identify which one is traversed
by the target track candidate. Modeling of track dynamics can be handled by LSTMs or CNNs.

A basic LSTM model for 2D track finding is shown in figure 4. This model consists of an LSTM
layer which reads the input pixel arrays and a single fully-connected layer which is applied separately
to each LSTM output to produce the pixel predictions for the same detector layer. The seed is specified

DOI: 10.1051/, 00003 (2017) 715001EPJ Web of Conferences 50 epjconf/201 0003

4

Connecting The Dots/Intelligent Trackers 2017

3210

LSTM LSTM LSTM LSTM

FC FC FC FC

Input detector layer
arrays

Target track

Output detector layer
predictions

Target track
3210

Figure 4. The basic LSTM model architecture used to classify hits for one track. The LSTM and a fully-
connected layer with a softmax activation read the pixel arrays and predict which pixels belong to the target
track.

Figure 5. LSTM model input (left) and prediction (right) for an example with one target track and five back-
ground tracks. The first five detector layers are used to specify the target track seed. In the prediction, darker
values mean greater confidence.

happens when a ten-layer convolutional model with no down-sampling and filter size (3×3) is applied
to a fifty-detector-layer toy dataset. The extrapolation reach of the model is limited by the number of
convolutional layers, illustrating a potential limitation of this kind of architecture. One way to combat
this is by introducing pooling layers which down-sample the data and allow to combine information
across the entire image. It is then necessary to introduce up-sampling and additional convolutional
layers to recover the track prediction at the original image size. This is essentially an autoencoder
model which tries to reconstruct a subset of its input. An example input and output after training such
a model is shown in figure 8.

DOI: 10.1051/, 00003 (2017) 715001EPJ Web of Conferences 50 epjconf/201 0003

6

Connecting The Dots/Intelligent Trackers 2017

3210

LSTM LSTM LSTM LSTM

FC FC FC FC

Input detector layer
arrays

Target track

Output detector layer
predictions

Target track
3210

Figure 4. The basic LSTM model architecture used to classify hits for one track. The LSTM and a fully-
connected layer with a softmax activation read the pixel arrays and predict which pixels belong to the target
track.

Figure 5. LSTM model input (left) and prediction (right) for an example with one target track and five back-
ground tracks. The first five detector layers are used to specify the target track seed. In the prediction, darker
values mean greater confidence.

happens when a ten-layer convolutional model with no down-sampling and filter size (3×3) is applied
to a fifty-detector-layer toy dataset. The extrapolation reach of the model is limited by the number of
convolutional layers, illustrating a potential limitation of this kind of architecture. One way to combat
this is by introducing pooling layers which down-sample the data and allow to combine information
across the entire image. It is then necessary to introduce up-sampling and additional convolutional
layers to recover the track prediction at the original image size. This is essentially an autoencoder
model which tries to reconstruct a subset of its input. An example input and output after training such
a model is shown in figure 8.

DOI: 10.1051/, 00003 (2017) 715001EPJ Web of Conferences 50 epjconf/201 0003

6

Connecting The Dots/Intelligent Trackers 2017

algorithmic
R&D Concurrency Hardware

acceleration
Machine
Learning

Code
optimization

Examples & more information:  
See talk by Maurizio
CERN co-organized, Tracking Machine Learning Challenge (Apr 2018)

Image:
Convolutional Neural network for track finding
via (sub-)feature pooling

Image:
Recurrent Neural network for prediction 
via Long Short Term Memory (LSTM)

Future Tracking -

Summary

9

Achieving this will gain great physics potential, though requires
- R&D in all of these areas
- preserve the excellent LHC physics performance of track reconstruction
- foster and strengthen in-house expertise
- work closely with and alongside detector R&D lines
- profit from, coordinate with and participate in ML R&D
- strengthen common, community-driven and open software

algorithmic
R&D Concurrency Hardware

acceleration
Machine
Learning

Code
optimization

Track reconstruction for next luminosity frontier

Backup

Future Tracking -

HL-LHC CPU extrapolation

11

Based on ATLAS ITk estimates
- similar picture for CMS

> µ <
0 50 100 150 200

H
S0

6
pe

r E
ve

nt

0

50

100

150

200

250

300

Total Run 2
Total ITk
Si Track Finding (Run 2)
Si Track Finding (ITk)
Ambiguity Resolution (Run 2)
Ambiguity Resolution (ITk)

ATLAS Simulation Internal
 eventstITk Inclined Duals, t

