WG6: High Speed Links

CERN EP Department
R&D on experimental technologies – 1st Workshop
F. Vasey and P. Moreira (Convenors)
2018 / 03 / 16
WG6: High Speed Links

Mandate

- “Definition of the R&D needs in the field of High Data Rate Electrical and Optical Links for detector systems”

Convenors

- Francois Vasey and Paulo Moreira

Members

- 33 “Subscribers”

Activities

- **Pre-meeting (9 February 2018)**
 - Restricted to “selected” EP specialists:
 - Sophie Baron, Carmelo Scarcella, Szymon Kulis, Jan Troska
 - Explored *State of the Art*
 - Extrapolation to the 2020 – 2025 horizon
- **1st Meeting (5 Mar 2018)**
 - Open to the HEP community
 - 26 participants (9 meeting room + 17 Vidyo)
 - Report on the pre-meeting
 - Community state of the art and future research
- **1st Workshop (today’s meeting)**
 - Synthesis of the 1st meeting
 - Challenges
Reports at this Workshop

- Szymon Kulis:
 - High Speed Link Technologies state of the art and extrapolation to 2025
- Paulo Moreira:
 - Map of the Community and Development Activities, Challenges beyond HL – LHC
High Speed Link Technologies
state of the art and extrapolation to 2025

Electronics: S. Baron, S. Kulis, P. Moreira
Opto: C. Scarcella, J. Troska, F. Vasey
High Speed Links in HEP

On-Detector
Radiation Hard Electronics

Off-Detector
Commercial Off-The-Shelf (COTS)

Custom ASICs

Timing & Trigger
DAQ
Slow Control

(lp)GBT
Serializer
Deserializer

Electrical links to the frontend modules. Lengths: \(cm \) to few \(m \)

VTRx
Opto module

Short distance optical links: 50 to 300 m

source: https://www.xilinx.com

source: https://www.finisar.com

Timing & Trigger
DAQ
Slow Control

FPGA
SFP+

CERN-EP R&D WG6: High Speed Links, 16/03/2018
• **Development of Links** is highly dependent on:
 • **Machine** being considered
 • Radiation environment
 • HL – LHC: > 100 Mrad
 • CLIC: < 1 Mrad
 • FCC: > 1Grad
 • Timing requirements (beam structure)
 • **Type of detector** (e.g. Pixel-Detectors, Trackers or Calorimeters)
 • Data rates / aggregation
 • Distances
 • Power consumption

• R&D program (2020 – 2025) it is likely to target the upgrade of HL-LHC (“LS4”) which can then pave the way to more distant projects (ILC/CLIC, FCC, ...)

• Link developments are thus likely to target high data rates applications, and in some cases extremely radiation hard environments!
Radiation Hardness

• **Radiation hardness is** and will be the **major technical challenge**:
 • High-Speed (≥ 10 Gb/s) Circuits developed in the CMOS technologies currently being used by the HEP community will not survive TID doses higher than 100 / 200 Mrad

• Experience in qualifying active optoelectronic components points to the exclusion of opto-devices for radiation environments exceeding 3×10^{15} n/cm2

• Possible escapes are:
 • Explore **new commercial IC technologies**:
 • Large qualification work that has to be done wide across the HEP community *(Synergy with the IC Technologies Working Group is needed to identify possible solutions)*
 • Explore **new optoelectronic devices**:
 • e.g. optical modulators with external and remote laser source
 • Explore **electrical links** for extreme radiation environments:
 • Large bandwidths in low mass cables might be difficult to achieve.

Source: https://spectrum.ieee.org
Source: http://www.luxtera.com
• **HEP systems are certainly lagging** behind research papers (for which the main aim is to demonstrate peak performance) and commercial systems (FPGAs)

• **HEP ASIC performance** tends to be limited by:
 - Long development cycles: *radiation qualification and reduced resources*
 - Use of relatively old technology nodes: *radiation qualification and prototyping cost*
 - Circuit techniques: *increasing radiation tolerance* to TID and SEU

• If a projection can be made in the horizon of 2020 to 2025 the HEP systems **should be targeting 20 - 40 Gb/s systems**:
 - Well within the capability of today’s FPGAs
• Data rates are highly correlated with the technology nodes

• **Shift in modulation format** (not technology) can be seen for highest data rates (NRZ -> PAM4)

• Research papers demonstrate 40 Gb/s NRZ to be possible for technology nodes ≤ 65 nm

• Commercial systems (FPGAs) introduced 30Gb/s + data rates for the 28 nm node and below
ASICs Technology : Overview

• The **technology scale trend is favorable to design high data rate circuits**
 It is however not clear that the technology scaling will yield (naturally) radiation hard ASICs

• Technology goes in the direction of using **lower supply voltages** that results in **better power efficiency** (advantageous for HEP applications)

• However lower supply voltages reduce the ability to:
 • Drive laser diodes or VCSELs (need 2.5V)
 • Drive Modulators (need 2V or above)
 • Bias PIN-diodes (need 2V or above)

• The **choice of which technology** to use must thus be driven by:
 • The **radiation field** of the environment
 • The **data rates** to be achieved
 • The **type of optoelectronic device** to interface with
FPGA Technology : Introduction

- **HEP synergy with FPGAs** (counting room systems)
 - Last 2 generations of LHC projects used FPGAs in backend systems
 - Minimize the effort to develop test systems for the Links and ASICs

- **HEP requirements for FPGA transceivers** (so far so good)
 - Bypassing commercial protocols
 - Optimizing equalization
 - Controlling the latency of data & clocks
 (deterministic latency in CPRI protocol)

- **Links/ASIC developments** should thus stay in track and maintain compatibility with the FPGA developments as much as possible.
• Data centers, networking platforms:
 - Terabit interfaces
 - 56/58 Gbps PAM-4
 - Highest processing power & efficiency
 - Highest flexibility

• Internet of Things (IoT), 5G wireless:
 - Lower bandwidth (links speed to ~10Gbps)
 - Lower processing power
 - Low cost
 - Small form factor
Per-lane rates:
- 10G NRZ, 25G NRZ, 50G PAM4 (25GBaud)

Multi lanes to increase system bandwidth (×2, ×4, ×8, ×16)

Distances > 500m are Single Mode

Data Center connections are moving:
- Within the Data Center Rack from 10GE to 25GE
- Between Data Center Racks from 40GE to 100GE
- Inter-Data Centers & WAN from 100GE to 400GE (being standardized now)
Optoelectronics Technology : Trends

- Radiation resistance is not changing with new generations of opto electronic components (in our observations)
- Commercial high speed driver ASICs are usually SiGe-BiCMOS based (not CMOS)
- Data rates in HEP have historically been limited by the serializer (Rad-hard GOL or GBTx)
- Time-division multiplexing hits a limit around 25-50Gbps (VCSELS)
 - Higher bit-rates achieved through
 - Wavelength multiplexing
 - Multi-level signaling (PAM-4 and others)
- Both Single Mode and Multi Mode links have been developed in HEP
 - SM/MM battle ongoing in datacenter applications. SM will be the ultimate winner, but at which crossover point?
Silicon Photonics Technology: Introduction

• What is Silicon Photonics?
 • A photonic system using **silicon as an optical medium**
 • The silicon waveguide lies on top of a silica cladding layer (SOI)
 • Silicon is patterned with sub-micron precision into planar micro-photonic components

• So, why is Si-Photonics of interest to HEP?
 • Radiation resistance potentially as good as Si-sensors and CMOS electronics
 • Possibility to design custom circuits in MPW framework
 • Possible Co-integration with sensor and electronics

• Silicon photonics radiation resistance
 • **Not sensitive to displacement damage:**
 • Almost no degradation up to 5×10^{16} n/cm2
 • **Sensitive to TID:**
 • Devices stay operational to ~200 Mrad
Silicon Photonics Technology: Roadmap

Developments ongoing at CERN

(Source: Silicon Photonics 2018 report, Yale Développement, January 2018)
• Nowadays the photonic IC size is generally larger than the electronic IC size
 • Free carrier dispersion modulators are relatively large devices > 1 mm
 • Fiber attachment has a large footprint onto the photonic chip

• Area on electronic IC is in general more expensive than on photonic IC
 • Hybrid integration is currently preferred to monolithic integration of electronics and photonics devices

• Through Substrate Via (TSV) to replace wire bonding and minimize parasitic? (Synergy with the Silicon detectors Working Group)
Other Issues

• Systems implemented so far in HEP have rather distributed data sources
 • Moving to higher data rates usually means solving an aggregation challenge
 • Not clear that super high capacity is what is needed at the data source
 • Architecture and topology challenge? Need for copper fan-in network?

• Data rates are becoming asymmetric with the LpGBT system (10Gbps / 2.5Gbps)
 • A heresy in the commercial world

• Link systems become more power efficient (energy required to transmit a bit of information goes down). However, due to increase in the data rate, the power consumption of the link has tendency to stay constant.

• Link cost is a salient issue
 • Link cost is always part of the development equation for large systems
 • The benefit of fewer faster links must be compared to cheaper/slower links?
ASIC Development: Main Challenges

- Very high radiation levels (TID) > 100 Mrad
 - Explore new down scaled commercial IC technologies
 - High bandwidth electrical links over low mass cables might be a necessity so research on such a systems is also very much needed

- Low supply voltages and low breakdown voltages make difficult to drive optoelectronic components efficiently
 - Alternative technologies and architectures need research

- Synergy with FPGAs is crucial
Opto Development : Main Challenges

- **Very high radiation levels NIEL > 3×10^{15} \text{n/cm}^2**
 - Relocate actives? Qualify Si-Photonics?
- **Capped distance x bandwidth product**
 - Above 10Gbps, identify rad-hard high-bandwidth MM fiber? SM?
- **Line-rates follow GbE standards in discrete steps**
 - After 10Gbps comes 25Gbps
 - FPGA IP to become narrowband as data rates increase
 - GBT++ rate = 25Gbps
 - PAM4 starts at 25GBaud
- **Multiplexing** allows to increase capacity without changing bitrate
 - Multi-level signaling (PAM4 in FPGA at 25GBaud and above)
 - Wavelength multiplexing (could ease the aggregation challenge)
- **Packaging remains a massive challenge** (try to benefit from COTS solutions)
 - Hybrid integration with electronics and sensors
 - Pigtailing

Source: https://cacm.acm.org
Map of the Community and Development Activities, Challenges beyond HL-LHC

CERN EP Department
R&D on experimental technologies – 1st Workshop
P. Moreira and F. Vasey
2018 / 03 / 16
Outline

• WG6 Contributors and Themes
• HEP Links
• Overview of the community activities and technology challenges
 – Summary of the 1st meeting (5th March):
 • Optoelectronics
 • ASICs
 • Optical “wireless”
 • RF
 • Si-Photonics
• “Development space” - CERN’s perspective
• Summary
Contributors and Themes

<table>
<thead>
<tr>
<th></th>
<th>CERN</th>
<th>INFN – Pisa*</th>
<th>KIT</th>
<th>SMU – EE</th>
<th>SMU – PH</th>
<th>WADAPT**</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASICs</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Electrical links</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPGA systems</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optoelectronics</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free-space optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-Photonics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

For details and credits please see the material presented in the “WG6-HighSpeedLinks first-meeting”: https://indico.cern.ch/event/706078/

Speakers:

- CERN: Francois Vasey
- INFN – Pisa: Fabrizio Palla
- KIT: Marc Schneider
- SMU – EE: Ping Gui
- SMU – PH: Jingbo Ye
- WADAPT: Pedro Rodriguez Vasquez

* INFN – Pisa: Scuola Superiore S. Anna & University of Pisa Engineering Department;
** WADAPT consortium: Argonne National Laboratory, Bergen University, CEA/LETI/DRT/DACLE/LAIR, CEA/DRF/IRFU/DPhP&Paris-Saclay University Gangneung-Wonju University, Heidelberg University, Uppsala University, Wuppertal University
Today’s typical HEP Link Architecture

High radiation doses
- LHC: up to 100 Mrad (10^{14} 1MeV n/cm2)
- HL – LHC: up to 1 Grad (10^{16} 1MeV n/cm2)

No or small radiation doses

Short distance optical links: 50 to 300 m

Electrical links to the frontend modules. Lengths: cm to few m

Custom optocomponents
Optoelectronics

- **Radiation Damage in Optoelectronics**
 - Damage mechanism dominated by Displacement Damage (DD) caused by Non-Ionizing Energy Loss (NIEL) from heavy particles (neutral/charged hadrons, energetic leptons).
 - “Radiation Tolerance Limit” for VCSELs and PINs: “a few” 10^{15} n/cm2

- **PIN - Diodes:**
 - Reduction of the responsivity
 - Increasing of the dark current (pA to mA)

- **Challenges:**
 - PIN needs “high” bias voltages to maintain low capacitance [end of life conditions]
 - VCSELs need high forward voltages

- **VCSELs:**
 - Increase of threshold voltage/current
 - Decrease of the laser slope-efficiency
 - VCSELs display higher radiation tolerance than EE diodes

Graphs:

- **SM Photodiode**
 - $V_{\text{applied}} = -2.0 \text{ V}$
 - Increasing Φ

- **MM VCSEL**
 - $\Phi (10^{15} \text{ n/cm}^2)$
 - Increasing Φ

VL+ team:
- CERN
- Oxford
- SMU
- FNAL
ASICS

- The community has a large experience in the development of rad-hard communications ASICS
 - PLL & CDR: 4.8 / 5.12 GHz (65 / 130 nm CMOS)
 - Serializers/DeSerializers: 2.56 / 4.8 / 5.12 & 10.24 Gbps (65 / 130 nm CMOS)
 - Laser / VCSEL Drivers: 4.8 / 10.24 & 14 Gbps (65 / 130 nm CMOS)
 - PIN – Receivers: 4.8 Gbps (130 nm CMOS)
 - ADCs (building block for PAM4 receivers): 56 GS/s (28 nm CMOS)
 - Electrical cable drivers and receivers: 1.28 / 2.56 / 4.8 / 10.24 Gbps (65 / 130 nm CMOS)
 - RF mixers (for Rx & Tx): BW: 5.6 Gbps – OOK, Carrier: 60 GHz (130 nm BiCMOS)
 BW: 30 Gbps – BPSK, Carrier: 240 GHz (SiGe HBT)

- Challenges:
 - Maintain high-speed performance for very high radiation levels:
 • CMOS: TID > 100 Mrad
 • BiCMOS and SiGe: NIEL > 10^{15} n/cm^2
 - Some detector systems will need Low-Power ASICs
 - Some requirements “Incompatible” with CMOS technology scaling:
 • High voltages/currents required by VCSELs [specially at end of life]
 • High biasing voltages for PIN-Diodes [specially at end of life]
 • High modulation voltages needed to drive External Modulators
 - Should, in all cases, HEP follow the technology scaling?
 • Stay with older nodes for some applications?
 • Use more “exotic” technologies (BiCMOS, SiGe HBT, etc.)
 • Requires technology validation for rad-hard applications!
 • Does the community has the resources to deal with multiple technologies?
Electrical Links

- Electrical Links have been developed for:
 - Relatively short distances between frontends and SerDes ASICs
 - Up to 1.28 Gbps
 - Up to a few meters
 - Very short distances between SerDes and LD – driver / PIN – receiver
 - Up to 10.24 Gbps
 - ~ cm
- Can be a way to “escape” the relatively rad-hard environment of the central detectors [before going optical]
 - e.g. RD53 pixels: High-Speed transmission over low mass cables (high attenuation and low bandwidth)
 - ATLAS: Up to 6 m @ 5 Gbps
 - CMS: Up to 2 m @ 1.28 Gbps
- Challenges:
 - HEP needs the use of low mass cables with their inherent bandwidth limitations
 - 5 / 20 Gbps electrical links over distances of a few meters needed
 - Development of pre-emphasis & equalization to overcome the bandwidth limitations
 - PAM4 (4-level Pulse Amplitude Modulation):
 - To circumvent the limitations of the data transmission medium (10 / 20 Gb/s)
 - Plus equalization to minimize the channel impairments
Free-space Optics

- **Principle:**
 - “Line of sight” optical transmission:
 - Target distance: 10 cm
 - Data is repeated at each detector layer
 - Electrical – Optical - Electrical
- **Benefits:**
 - Enables inter-layer communications (e.g. Triggering)
 - Avoids the use and installation of optical fibers
 - Collimating structures (lenses) needed
- **Challenges:**
 - NIEL radiation effects on PIN / VCSEL
 - The “geometry” of the data transmission system needs to be built into the detectors:
 - Alignment: ±0.75 mm @ 4.25 Gb/s
 - Bandwidth increases every time a layer is crossed:
 - Data from successive layers add up
 - Either more bandwidth or channels needed in the outer layers
 - Regenerative repeaters are [likely] needed along the repeating chain to contain the BER
 - Links between the outer layer and the counting room are likely to be “conventional” optical links
RF

• **Principle:**
 – The signal is modulated on a high frequency carrier and transmitted (using antennas) between two successive detector layers
 • Data rate $\approx 1/10$ carrier frequency (OOK, BPSK)
 – Data is repeated at each detector layer

• **Benefits:**
 – Enables inter-layer communications (e.g. Triggering)
 – No optoelectronics components needed
 – No optical fibers to be installed

• **Challenges:**
 – Needs the use of high-directivity antennas to avoid cross talk
 – Other challenges as for Free-space Optics (except no optoelectronics)
Si-Photonics

- **Integration of optoelectronic devices in a “Photonic Si chip”**
 - Wave-length-division multiplexers
 - Modulators
 - Photodiodes (Ge)
- **Benefits:**
 - Tight integration with FE ASICs possible
 - Laser kept out of radiation environments
 - Number of fibers drastically reduced
 - Potential for 40 Gb/s NRZ
- **Challenges:**
 - Still a maturing technology
 - Design tools lagging behind ASICs
 - MZMs require:
 - High modulation voltages (3 – 8 V_{pp})
 - Into 50 Ω
 - MZM insensitive to NIEL but sensitive to TID:
 - But progress has already been made in the community!

SiPh4HEP project
CERN
KIT
INFN
Bristol
Development Space

Rate multiplication factor

Data Rate

Radiation Hardness

10^15
100
10^16/cm^2
1000 Mrad

10G
25G

Technologies

Rate multiplication factor

Data Rate

Radiation Hardness

10G

25G

VCSEL

SiPh

Cu

10^{15}

100

10^{16}/cm^2

1000 Mrad

x2

x4
Current Developments

Ongoing development: LpGBT-VL+ project
HL-LHC, 2020

Rate multiplication factor

Data Rate

VCSEL

SiPh

Cu

10G

25G

10^{15}

100

10^{16} /cm^2

1000 Mrad

Radiation Hardness

x2

x4
Future: Higher Data rates

Ongoing development:
LpGBT-VL+ project
HL-LHC, 2020

Future developments:
1. Higher Data rates
Radiation Hardness

Data Rate

Rate multiplication factor

Future: Si-Photonics

Ongoing development:
LpGBT-VL+ project
HL-LHC, 2020

Future developments:
1. Higher Data rates
2. Si Photonics:

VCSEL

SiPh

Cu

10^15 100 1000 Mrad

10^16 /cm^2

10G 25G

x2 x4
Future: \(\lambda\) - Multiplexing & PAM4

- **Ongoing development:**
 - LpGBT-VL+ project
 - HL-LHC, 2020

- **Future developments:**
 1. Higher Data rates
 2. Si Photonics:
 3. \(\lambda\) Multiplexing and multi-level signalling (PAM)

Diagram:
- Data Rate
 - 10G
 - 25G
 - VCSEL
 - PAM4
 - SiPh
- Radiation Hardness
 - 10^15 /cm^2
 - 1000 Mrad
 - x2
 - x4
- Rate multiplication factor
 - 4\(\lambda\) WDM

Graph:
- 3D graph showing data rates and radiation hardness with multiplexing factors.
Future: Electrical over low mass copper

Ongoing development:
LpGBT-VL+ project
HL-LHC, 2020

Future developments:
1. Higher Data rates
2. Si Photonics:
3. λ Multiplexing and multi-level signalling (PAM)
4. Low mass copper links and multi-level signalling (PAM)
Future: Electrical over low mass copper

The “missing dimension” is Power:
• Depending on the system, low power operation may be imperative!

Ongoing development:
LpGBT-VL+ project
HL-LHC, 2020

Future developments:
1. Higher Data rates
2. Si Photonics:
3. λ Multiplexing and multi-level signalling (PAM)
4. Low mass copper links and multi-level signalling (PAM)
Summary

• The community is exploring new [and old] ways to provide the bandwidth needed to read out detectors

• Some of the technologies are well known in HEP:
 – Optoelectronics / Electrical Links and Communication ASICs
 – In line with the industrial developments these paths can [and will] certainly be carried forward

• Newer technologies are also being considered:
 – Free-space optics / RF / Si-Photonics
 – The understanding of their potential in HEP is still at its infancy but they broaden the range of possibilities

• Building detector systems without FPGAs is not an option so their roadmap has to be closely tracked in HEP

• The overriding challenge is radiation:
 – For CMOS, SiPh: TID > 100 Mrad
 – For Optoelectronics, SiGe: NIEL > 3x10^{15} n/cm^2
 – Need to define the target environment!
 • Solutions need to be tailored to Detector and Rad-Hard environment!

• Low-power operation needed for inner detector systems

• But, practical viability and “industrialization” effort can’t be underestimated when the target is producing 10k-100k links