WG6: High Speed Links

CERN EP Department R&D on experimental technologies – 1st Workshop F. Vasey and <u>P. Moreira</u> (Convenors) 2018 / 03 / 16

WG6: High Speed Links

Mandate

• "Definition of the R&D needs in the field of High Data Rate Electrical and Optical Links for detector systems"

Convenors

Francois Vasey and Paulo Moreira

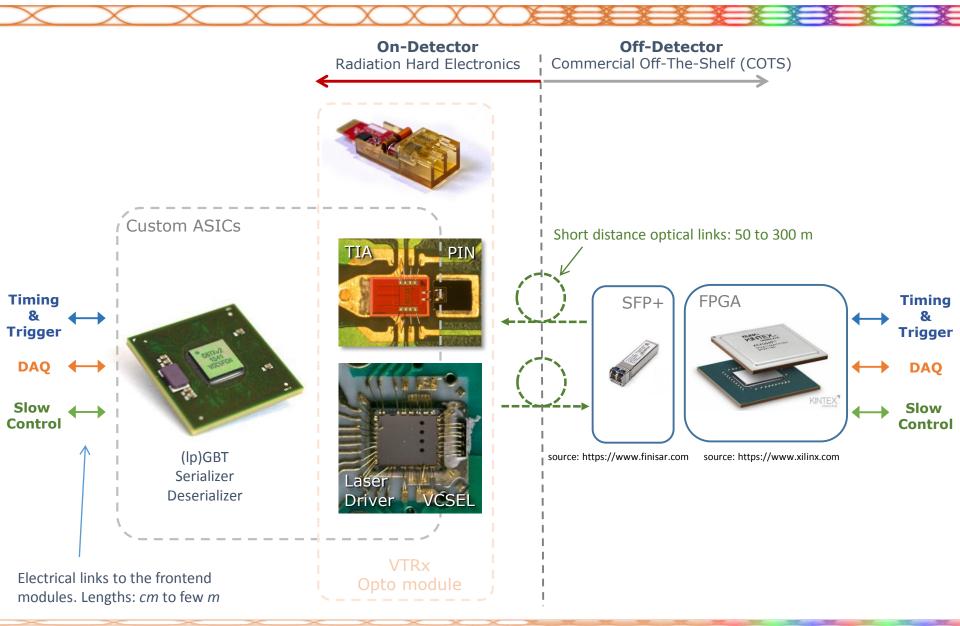
Members

• 33 "Subscribers"

Activities

- Pre-meeting (9 February 2018)
 - Restricted to "selected" EP specialists:
 - Sophie Baron, Carmelo Scarcella, Szymon Kulis, Jan Troska
 - Explored State of the Art
 - Extrapolation to the 2020 2025 horizon
- 1st Meeting (5 Mar 2018)
 - Open to the HEP community
 - 26 participants (9 meeting room + 17 Vidyo)
 - Report on the pre-meeting
 - Community state of the art and future research
- 1st Workshop (today's meeting)
 - Synthesis of the 1st meeting
 - Challenges

Reports at this Workshop


- Szymon Kulis:
 - High Speed Link Technologies state of the art and extrapolation to 2025
- Paulo Moreira:
 - Map of the Community and Development Activities, Challenges beyond HL – LHC

High Speed Link Technologies state of the art and extrapolation to 2025

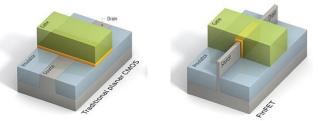
Electronics: S. Baron, <u>S. Kulis</u>, P. Moreira Opto: C. Scarcella, J. Troska, F. Vasey

CERN EP Department R&D on experimental technologies – 1st Workshop 16/03/2018 Geneva

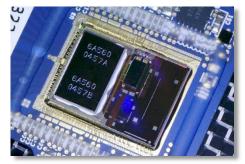
High Speed Links in HEP

CERN-EP R&D WG6: High Speed Links, 16/03/2018

Foreword

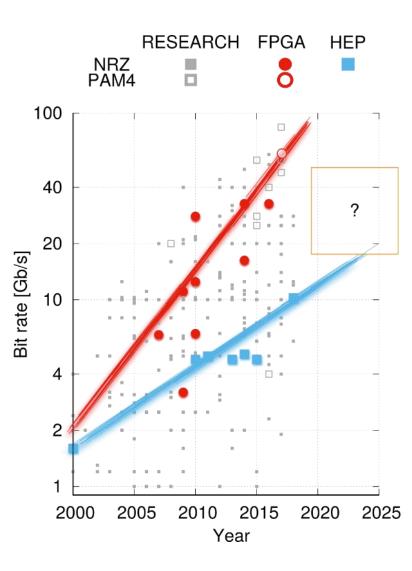

• **Development of Links** is highly dependent on:

- Machine being considered
 - Radiation environment
 - HL LHC: > 100 Mrad
 - CLIC: < 1 Mrad
 - FCC: > 1Grad
 - Timing requirements (beam structure)
- Type of detector (e.g. Pixel-Detectors, Trackers or Calorimeters)
 - Data rates / aggregation
 - Distances
 - Power consumption
- R&D program (2020 2025) it is likely to target the upgrade of HL-LHC ("LS4") which can then pave the way to more distant projects (ILC/CLIC, FCC, ...)
 - Link developments are thus likely to target high data rates applications, and in some cases extremely radiation hard environments!

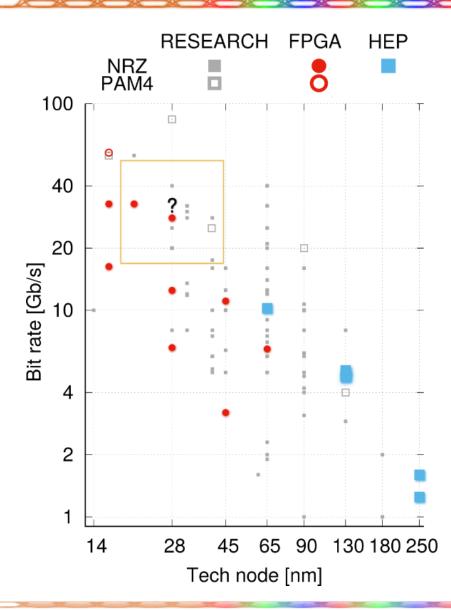


Radiation Hardness

- Radiation hardness is and will be the major technical challenge:
 - High-Speed (≥ 10 Gb/s) Circuits developed in the CMOS technologies currently being used by the HEP community will not survive TID doses higher than 100 / 200 Mrad
 - Experience in qualifying active optoelectronic components points to the exclusion of opto-devices for radiation environments exceeding 3×10¹⁵ n/cm²
- Possible escapes are:
 - Explore new commercial IC technologies:
 - Large qualification work that has to be done wide across the HEP community (Synergy with the IC Technologies Working Group is needed to identify possible solutions)
 - Explore new optoelectronic devices:
 - e.g. optical modulators with external and remote laser source
 - Explore electrical links for extreme radiation environments:
 - Large bandwidths in low mass cables might be difficult to achieve.


Source: https://spectrum.ieee.org

Source: http://www.luxtera.com


ASICs Technology : Serializer line rate trend

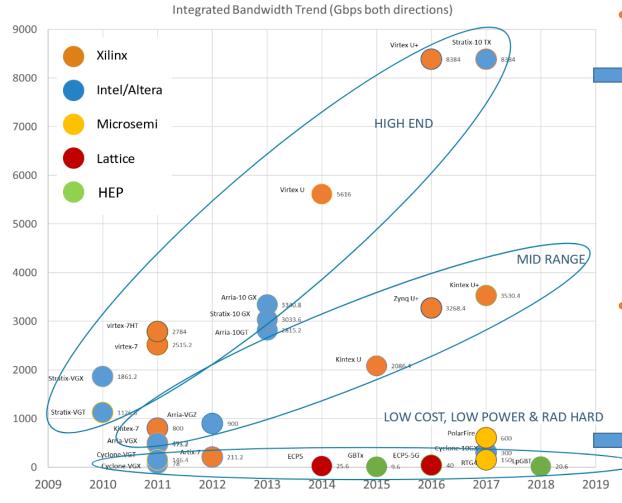
- HEP systems are certainly lagging behind research papers (for which the main aim is to demonstrate peak performance) and commercial systems (FPGAs)
- HEP ASIC performance tends to be limited by:
 - Long development cycles: radiation qualification and reduced resources
 - Use of relatively old technology nodes: radiation qualification and prototyping cost
 - Circuit techniques: increasing radiation tolerance to TID and SEU
- If a projection can be made in the horizon of 2020 to 2025 the HEP systems should be targeting 20 - 40 Gb/s systems:
 - Well within the capability of today's FPGAs

ASICs Technology : Technology nodes

- Data rates are highly correlated with the technology nodes
- Shift in modulation format (not technology) can be seen for highest data rates (NRZ -> PAM4)
- Research papers demonstrate 40 Gb/s NRZ to be possible for technology nodes ≤ 65 nm
- Commercial systems (FPGAs) introduced 30Gb/s + data rates for the 28 nm node and below

ASICs Technology : Overview

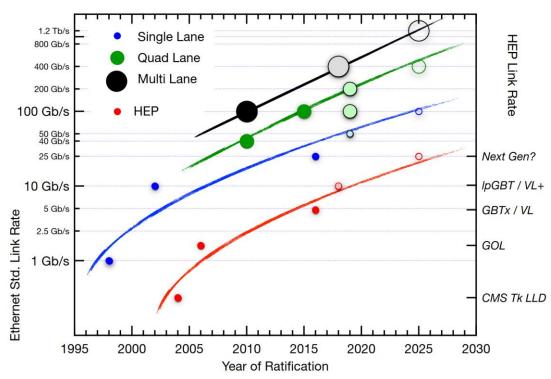
- The technology scale trend is favorable to design high data rate circuits It is however not clear that the technology scaling will yield (naturally) radiation hard ASICs
- Technology goes in the direction of using lower supply voltages that results in better power efficiency (advantageous for HEP applications)
- However lower supply voltages reduce the ability to:
 - Drive laser diodes or VCSELs (need 2.5V)
 - Drive Modulators (need 2V or above)
 - Bias PIN-diodes (need 2V or above)
- The choice of which technology to use must thus be driven by:
 - The radiation field of the environment
 - The data rates to be achieved
 - The **type of optoelectronic device** to interface with

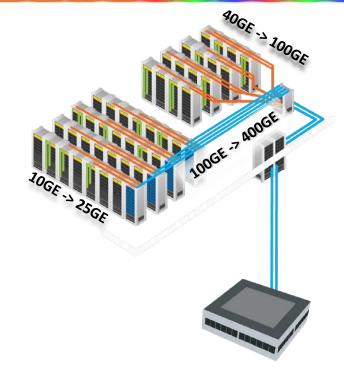


FPGA Technology : Introduction

- HEP synergy with FPGAs (counting room systems)
 - Last 2 generations of LHC projects used FPGAs in backend systems
 - Minimize the effort to develop test systems for the Links and ASICs
- HEP requirements for FPGA transceivers (so far so good)
 - Bypassing commercial protocols
 - Optimizing equalization
 - Controlling the latency of data & clocks (deterministic latency in CPRI protocol)
- Links/ASIC developments should thus stay in track and maintain compatibility with the FPGA developments as much as possible.

FPGA Technology : Trends




Data centers, networking platforms:

- Terabit interfaces
- 56/58 Gbps PAM-4
- Highest processing power & efficiency
- Highest flexibility

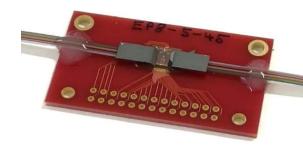
- Internet of Things(IoT), 5G wireless:
 - Lower bandwidth (links speed to ~10Gbps)
 - Lower processing power
 - Low cost
 - Small form factor

Optoelectronics Technology : Trends

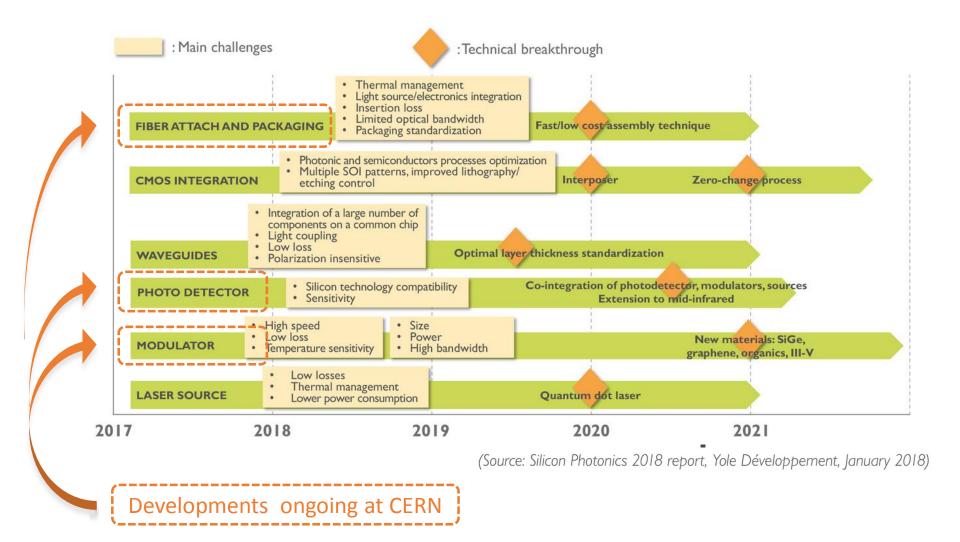
- Per-lane rates:
 - 10G NRZ, 25G NRZ, 50G PAM4 (25GBaud)
- Multi lanes to increase system bandwidth (×2, ×4, ×8, ×16)
- Distances > 500m are Single Mode

Data Center connections are moving:

- Within the Data Center Rack
 from 10GE to 25GE
- Between Data Center Racks
 from 40GE to 100GE
- Inter-Data Centers & WAN from 100GE to 400GE (being standardized now)

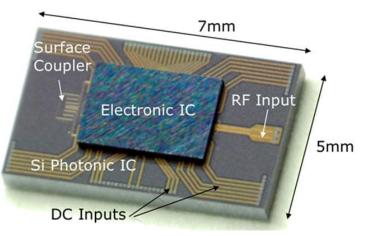

Optoelectronics Technology : Trends

- Radiation resistance is not changing with new generations of opto electronic components (in our observations)
- Commercial high speed driver ASICs are usually SiGe-BiCMOS based (not CMOS)
- Data rates in HEP have historically been limited by the serializer (Rad-hard GOL or GBTx)
- Time-division multiplexing hits a limit around 25-50Gbps (VCSELs)
 - Higher bit-rates achieved through
 - Wavelength multiplexing
 - Multi-level signaling (PAM-4 and others)
- Both Single Mode and Multi Mode links have been developed in HEP
 - SM/MM battle ongoing in datacenter applications. SM will be the ultimate winner, but at which crossover point?

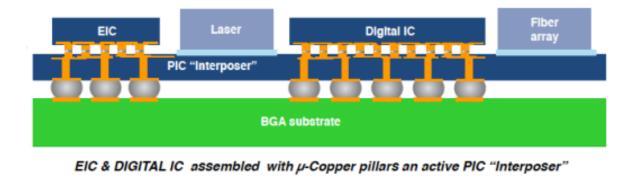


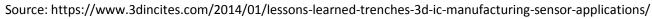
Silicon Photonics Technology : Introduction

- What is Silicon Photonics?
 - A photonic system using silicon as an optical medium
 - The silicon waveguide lies on top of a silica cladding layer (SOI)
 - Silicon is patterned with sub-micron precision into planar microphotonic components
- So, why is Si-Photonics of interest to HEP?
 - Radiation resistance potentially as good as Si-sensors and CMOS electronics
 - Possibility to design custom circuits in MPW framework
 - Possible Co-integration with sensor and electronics
- Silicon photonics radiation resistance
 - Not sensitive to displacement damage :
 - Almost no degradation up to $5 \times 10^{16} \text{ n/cm}^2$
 - Sensitive to TID :
 - Devices stay operational to ~200 Mrad

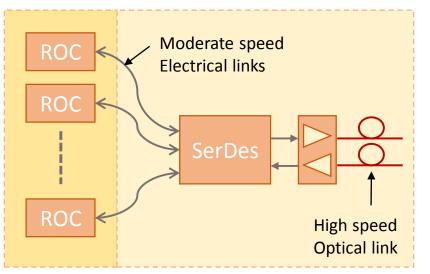


Silicon Photonics Technology : Roadmap




Silicon Photonics Technology : Packaging

- Nowadays the photonic IC size is generally larger than the electronic IC size
 - Free carrier dispersion modulators are relatively large devices > 1 mm
 - Fiber attachment has a large footprint onto the photonic chip
- Area on electronic IC is in general more expensive than on photonic IC
 - Hybrid integration is currently preferred to monolithic integration of electronics and photonics devices
- Through Substrate Via (TSV) to replace wire bonding and minimize parasitic? (Synergy with the Silicon detectors Working Group)


Source: "Silicon Photonics and FDMA PON: Insights from the EU FP7 FABULOUS Project" S. Abrate et all.

Other Issues

- Systems implemented so far in HEP have rather distributed data sources
 - Moving to higher data rates usually means solving an aggregation challenge
 - Not clear that super high capacity is what is needed at the data source
 - Architecture and topology challenge? Need for copper fan-in network?

- Data rates are becoming asymmetric with the LpGBT system (10Gbps / 2.5Gbps)
 - A heresy in the commercial world
- Link systems become more power efficient (energy required to transmit a bit of information goes down). However, due to increase in the data rate, the power consumption of the link has tendency to stay constant.
- Link cost is a salient issue
 - Link cost is always part of the development equation for large systems
 - The benefit of fewer faster links must be compared to cheaper/slower links?

ASIC Development : Main Challenges

- Very high radiation levels (TID) > 100 Mrad
 - Explore new down scaled commercial IC technologies
 - High bandwidth electrical links over low mass cables might be a necessity so research on such a systems is also very much needed
- Low supply voltages and low breakdown voltages make difficult to drive optoelectronic components efficiently
 - Alternative technologies and architectures need research
- Synergy with FPGAs is crucial

Opto Development : Main Challenges

- Very high radiation levels NIEL > 3×10¹⁵ n/cm²
 - Relocate actives? Qualify Si-Photonics?
- Capped distance x bandwidth product
 - Above 10Gbps, identify rad-hard high-bandwidth MM fiber? SM?
- Line-rates follow GbE standards in discrete steps
 - After 10Gbps comes 25Gbps
 - FPGA IP to become narrowband as data rates increase
 - GBT++ rate = 25Gbps
 - PAM4 starts at 25GBaud
- Multiplexing allows to increase capacity without changing bitrate
 - Multi-level signaling (PAM4 in FPGA at 25GBaud and above)
 - Wavelength multiplexing (could ease the aggregation challenge)
- Packaging remains a massive challenge (try to benefit from COTS solutions)
 - Hybrid integration with electronics and sensors
 - Pigtailing

Source: https://cacm.acm.org

Map of the Community and Development Activities, Challenges beyond HL-LHC

CERN EP Department R&D on experimental technologies – 1st Workshop P. Moreira and F. Vasey 2018 / 03 / 16

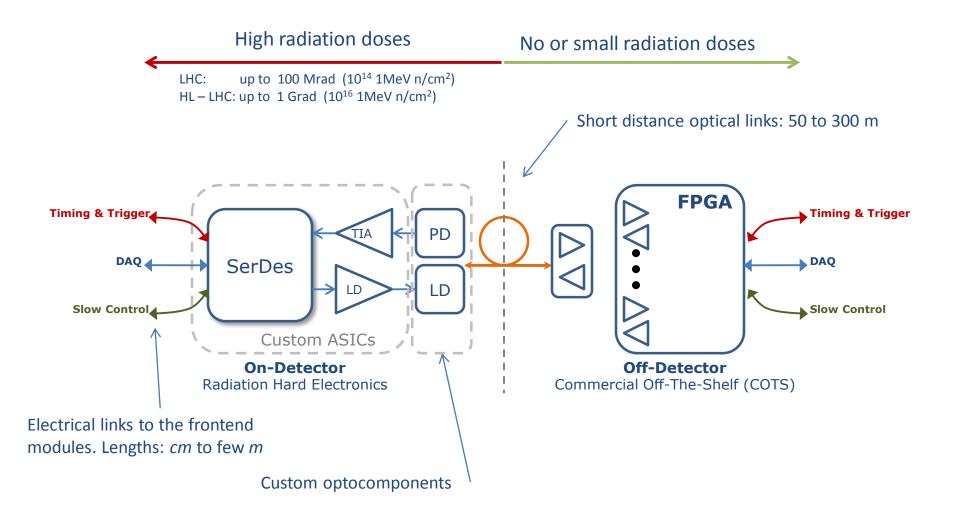
Outline

- WG6 Contributors and Themes
- HEP Links
- Overview of the community activities and technology challenges
 - Summary of the 1st meeting (5th March):
 - Optoelectronics
 - ASICs
 - Optical "wireless"
 - RF
 - Si-Photonics
- "Development space" CERN's perspective
- Summary

Contributors and Themes

	CERN	INFN – Pisa [*]	KIT	SMU – EE	SMU – PH	WADAPT**
ASICs	✓	✓		✓	✓	\checkmark
Electrical links	\checkmark				\checkmark	
FPGA systems	√					
Optoelectronics	\checkmark	\checkmark			\checkmark	
Free-space optics		✓				
RF						\checkmark
Si-Photonics	√	✓	✓	✓		

For details and credits please see the material presented in the "WG6-HighSpeedLinks first-meeting": <u>https://indico.cern.ch/event/706078/</u>


Speakers:

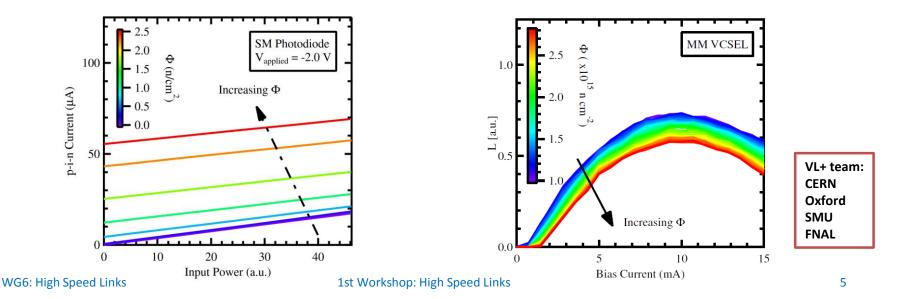
CERN: Francois Vasey INFN – Pisa: Fabrizio Palla KIT: Marc Schneider SMU – EE: Ping Gui SMU – PH: Jingbo Ye WADAPT: Pedro Rodriguez Vasquez

* INFN – Pisa: Scuola Superiore S. Anna & University of Pisa Engineering Department;

** WADAPT consortium: Argonne National Laboratory, Bergen University, CEA/LETI/DRT/DACLE/LAIR, CEA/DRF/IRFU/DPhP&Paris-Saclay University Gangneung-Wonju University, Heidelberg University, Uppsala University, Wuppertal University

Today's typical HEP Link Architecture

Optoelectronics


Radiation Damage in Optoelectronics

- Damage mechanism dominated by Displacement Damage (DD) caused by Non-Ionizing Energy Loss (NIEL) from heavy particles (neutral/charged hadrons, energetic leptons).
- "Radiation Tolerance Limit" for VCSELs and PINs: "a few" x10¹⁵ n/cm2
- PIN Diodes:
 - Reduction of the responsivity
 - Increasing of the dark current (pA to mA)

- VCSELs:
 - Increase of threshold voltage/current
 - Decrease of the laser slope-efficiency
 - VCSELs display higher radiation tolerance than EE diodes

• Challenges:

- PIN needs "high" bias voltages to maintain low capacitance [end of life conditions]
- VCSELs need high forward voltages

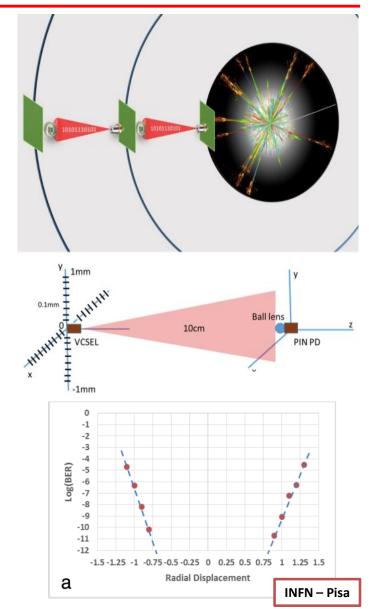
ASICs

- The community has a large experience in the development of rad-hard communications ASICs
 - PLL & CDR: 4.8 / 5.12 GHz (65 / 130 nm CMOS)
 - Serializers/DeSerializers: 2.56 / 4.8 / 5.12 & 10.24 Gbps (65 / 130 nm CMOS)
 - Laser / VCSEL Drivers: 4.8 / 10.24 & 14 Gbps (65 / 130 nm CMOS)
 - PIN Receivers: 4.8 Gbps (130 nm CMOS)
 - ADCs (building block for PAM4 receivers): 56 GS/s (28 nm CMOS)
 - Electrical cable drivers and receivers: 1.28 / 2.56 / 4.8 / 10.24 Gbps (65 / 130 nm CMOS)
 - RF mixers (for Rx & Tx): BW: 5.6 Gbps OOK, Carrier: 60 GHz (130 nm BiCMOS) BW: 30 Gbps – BPSK, Carrier: 240 GHz (SiGe HBT)

• Challenges:

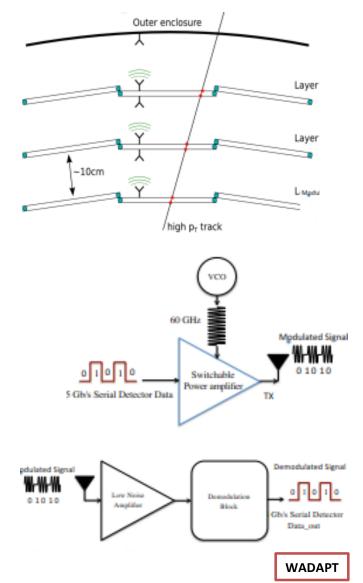
- Maintain high-speed performance for very high radiation levels:
 - CMOS: TID > 100 Mrad
 - BiCMOS and SiGe: NIEL > 10¹⁵ n/cm²
- Some detector systems will need Low-Power ASICs
- Some requirements "Incompatible" with CMOS technology scaling:
 - High voltages/currents required by VCSELs [specially at end of life]
 - High biasing voltages for PIN-Diodes [specially at end of life]
 - High modulation voltages needed to drive External Modulators
- Should, in all cases, HEP follow the technology scaling?
 - Stay with older nodes for some applications?
 - Use more "exotic" technologies (BiCMOS, SiGe HBT, etc.)
 - Requires technology validation for rad-hard applications!
 - Does the community has the resources to deal with multiple technologies?

Electrical Links


- Electrical Links have been developed for:
 - Relatively short distances between frontends and SerDes ASICs
 - Up to 1.28 Gbps
 - Up to a few meters
 - Very short distances between SerDes and LD driver / PIN receiver
 - Up to 10.24 Gbps
 - ~ cm
- Can be a way to "escape" the relatively rad-hard environment of the central detectors [before going optical]
 - e.g. RD53 pixels: High-Speed transmission over low mass cables (high attenuation and low bandwidth)
 - ATLAS: Up to 6 m @ 5 Gbps
 - CMS: Up to 2 m @ 1.28 Gbps
- Challenges:
 - HEP needs the use of low mass cables with their inherent bandwidth limitations
 - 5 / 20 Gbps electrical links over distances of a few meters needed
 - Development of pre-emphasis & equalization to overcome the bandwidth limitations
 - PAM4 (4-level Pulse Amplitude Modulation):
 - To circumvent the limitations of the data transmission medium (10 / 20 Gb/s)
 - Plus equalization to minimize the channel impairments

Free-space Optics

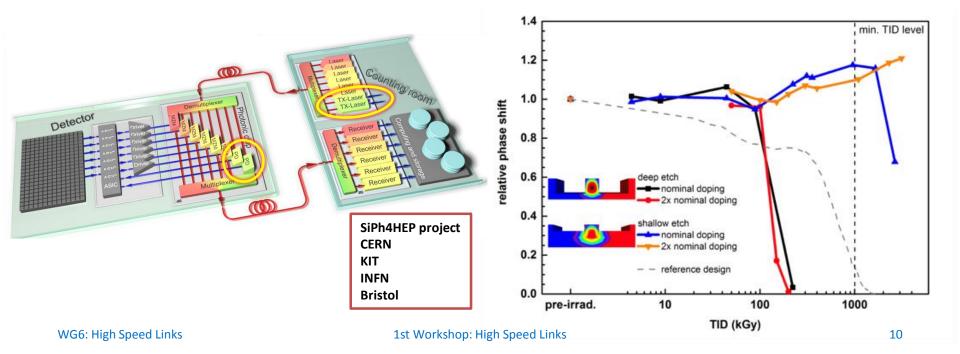
- Principle:
 - "Line of sight" optical transmission:
 - Target distance: 10 cm
 - Data is repeated at each detector layer
 - Electrical Optical Electrical
- Benefits:
 - Enables inter-layer communications (e.g. Triggering)
 - Avoids the use and installation of optical fibers
 - Collimating structures (lenses) needed


Challenges:

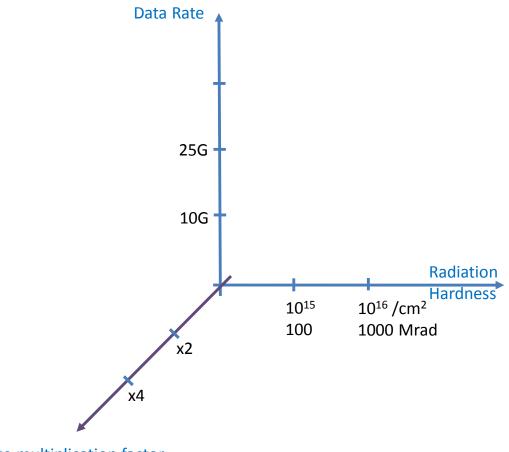
- NIEL radiation effects on PIN / VCSEL
- The "geometry" of the data transmission system needs to be built into the detectors:
 - Alignment: ±0.75 mm @ 4.25 Gb/s
- Bandwidth increases every time a layer is crossed:
 - Data from successive layers add up
 - Either more bandwidth or channels needed in the outer layers
- Regenerative repeaters are [likely] needed along the repeating chain to contain the BER
- Links between the outer layer and the counting room are likely to be "conventional" optical links

RF

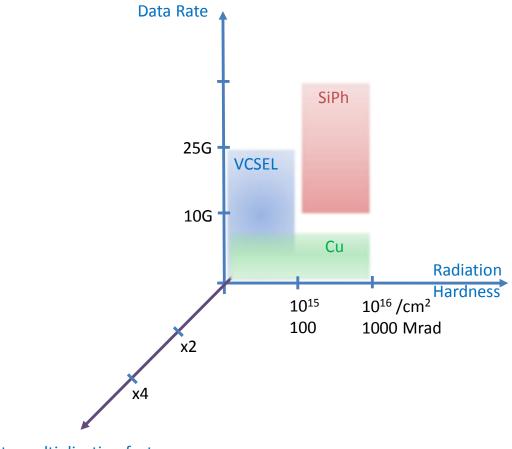
- Principle:
 - The signal is modulated on a high frequency carrier and transmitted (using antennas) between two successive detector layers
 - Data rate $\approx 1/10$ carrier frequency (OOK, BPSK)
 - Data is repeated at each detector layer
- Benefits:
 - Enables inter-layer communications (e.g. Triggering)
 - No optoelectronics components needed
 - No optical fibers to be installed
- Challenges:
 - Needs the use of high-directivity antennas to avoid cross talk
 - Other challenges as for Free-space Optics (except no optoelectronics)

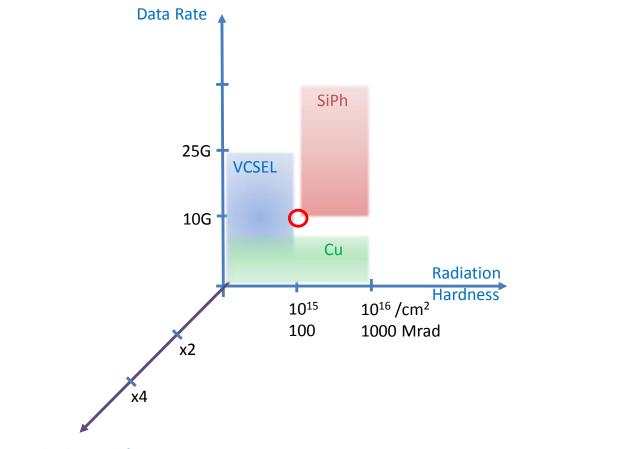


Si-Photonics

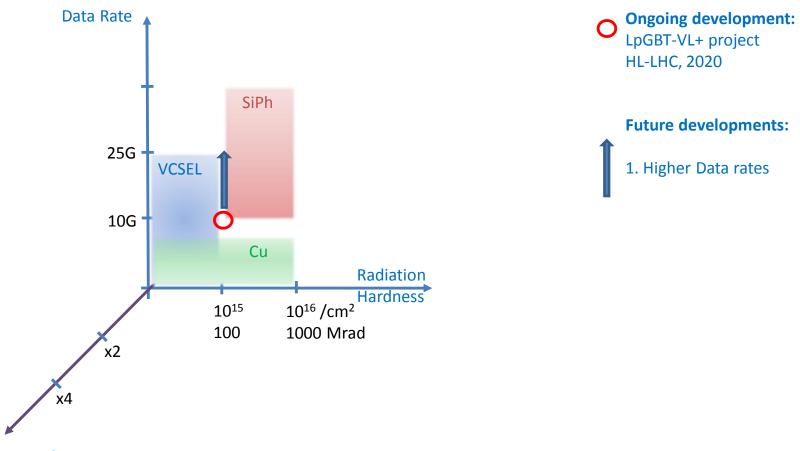

- Integration of optoelectronic devices in a "Photonic Si chip"
 - Wave-length-division multiplexers
 - Modulators
 - Photodiodes (Ge)
- Benefits:
 - Tight integration with FE ASICs possible
 - Laser kept out of radiation environments
 - Number of fibers drastically reduced
 - Potential for 40 Gb/s NRZ

Challenges:

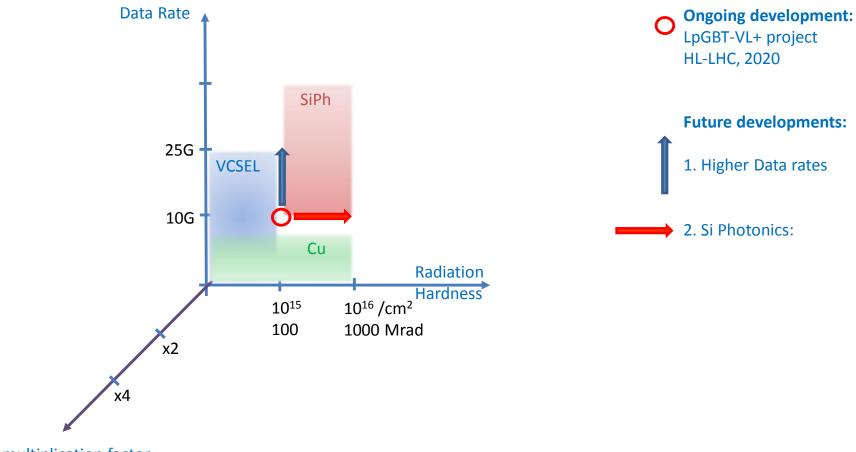

- Still a maturing technology
- Design tools lagging behind ASICs
- MZMs require:
 - High modulation voltages (3 8 V_{pp})
 - Into 50 Ω
- MZM insensitive to NIEL but sensitive to TID:
 - But progress has already been made in the community!


Development Space

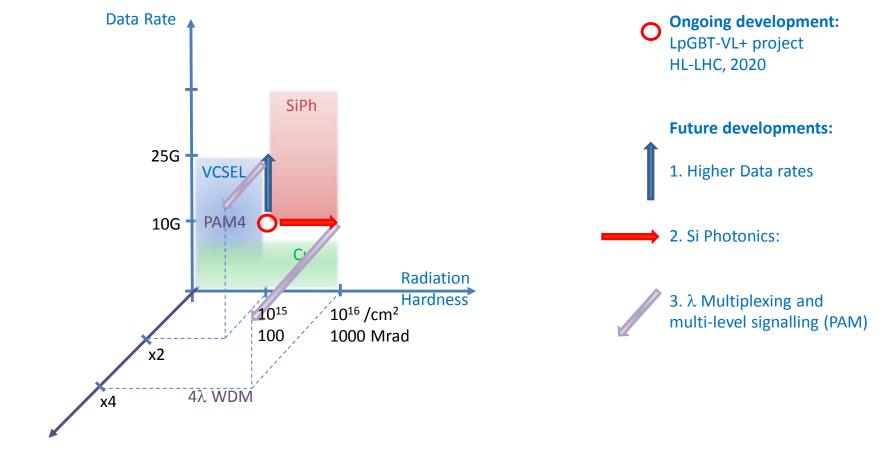
Technologies

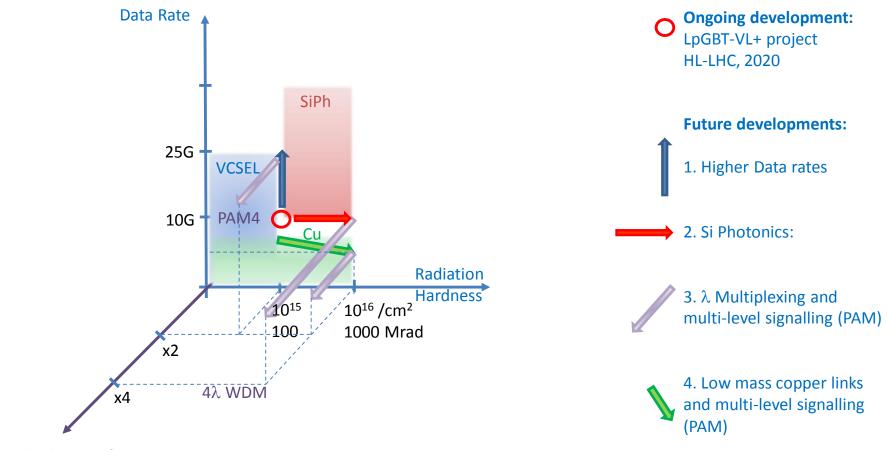


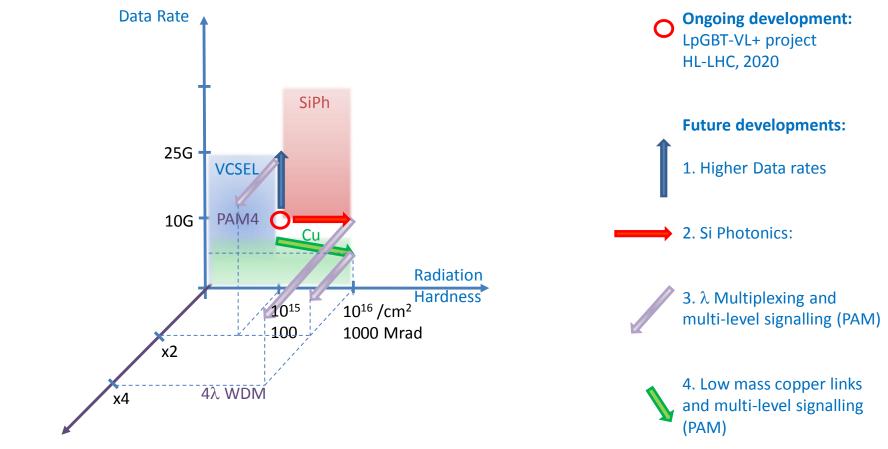
Current Developments



Ongoing development: LpGBT-VL+ project HL-LHC, 2020


Future: Higher Data rates


Future: Si-Photonics


Future: λ - Multiplexing & PAM4

Future: Electrical over low mass copper

Future: Electrical over low mass copper

Rate multiplication factor

The "missing dimension" is Power:

Depending on the system, low power operation may be imperative!

Summary

- The community is exploring new [and old] ways to provide the bandwidth needed to read out detectors
- Some of the technologies are well know in HEP:
 - Optoelectronics / Electrical Links and Communication ASICs
 - In line with the industrial developments these paths can [and will] certainly be carried forward
- Newer technologies are also being considered:
 - Free-space optics / RF / Si-Photonics
 - The understanding of their potential in HEP is still at its infancy but they broaden the range of possibilities
- Building detector systems without FPGAs is not an option so their roadmap has to be closely tracked in HEP
- The over-riding challenge is radiation:
 - For CMOS, SiPh: TID > 100 Mrad
 - For Optoelectronics, SiGe: NIEL > 3x10¹⁵ n/cm²
 - Need to define the target environment!
 - Solutions need to be tailored to Detector and Rad-Hard environment!
- Low-power operation needed for inner detector systems
- But, practical viability and "industrialization" effort can't be underestimated when the target is producing 10k-100k links