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Motivation

» The gauge-invariant EFT for Multi-Regge processes in QCD,
which includes Reggeized gluons |Lipatov; 1995] and Reggeized
quarks |Lipatov, Vyazovsky; 2001] has been introduced as a
systematic tool to compute and resum the higher-order
corrections in QCD, enhanced by log(s/(—t)), with the arbitrary
NFLL accuracy.

» Another motivation is the unitarization program for high-energy
scattering. The BFKL equation at the fixed logarithmic accuracy
predicts power-like growth of the cross-section with s, which
violates Froissart bound (< Unitarity). The basic idea is to
write-down the Hermitian effective Lagrangian for QCD at high
energies, so that Unitarity will hold automatically.
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Motivation

» Currently, a number of approaches is developed with the aim of
taking into account both DGLAP and BFKL effects. Many of
them try to generalize the amplitudes from the Lipatov’s EFT to
the Soft and Collinear regions (e.g. PRA [M.N., V.A.S., et. al.] or
HEJ [J. Andersen, et. al.] approaches, KaTie [A. van Hameren,
et. al.] Monte-Carlo code) or incorporate BFKL effects into the
framework of SCET (e.g. [I. Stewart, I. Rothstein, 2016]). Going
beyond tree level is an important part of this activity.

» In the talk I would like to describe the one-loop structiure of
Lipatov’s EFT. The complete picture, similar to one in ordinary
QCD, emerges.
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Introduction to Lipatov’s EFT
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Sudakov (light-cone) decomposition of momenta.

It is convenient to relate the basis vectors of Sudakov decomposition
with (almost) light-like momenta of colliding highly energetic particles
(P, =0):

[\

22
V'S VS

Then for any four-vector k* one has:

nt = , nfl = , S=2PP,=nyn_=2.

k= = (kyn' + k_nh) + K.,

N =

where ky = k* =n.k, nikp = 0. For the dot-product one has:

1
kq= 5 (k+q- +k-q+) — krar, ‘ k* =k k- — k7.

—110 a
Z/—2 g )

Rapidity:
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Multi-Regge Kinematics.

At high energies, t-channel exchange diagrams with
Multi-Regge(MRK) or Quasi-Multi Regge(QMRK) Kinematics of the

final-state dominate in the 2 — 2 4+ n amplitude.
Double Regge limit (MRK):

Py P
—— 51> —q7, 52°> —g5,
|
qa : S1 momentum fractions z; = qf/Pf',
I k zo=q5 /Py .

I Properties of MRK:

|
@ 2 e y(P)) oo, y(Py) = —o0, y(k) -
! finite,
—>—®—>—
P, Py >~z ~ <1 ko < Vs,

> g ~lar| ~ O0(z) > q; ~O(z*),
@ ~ larz| ~ O(z) > ¢ ~ O(z?).
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Reggeization of amplitudes in QCD.
In MRK asymptotics, 2 — 3-amplitude

Pl
A _PPPRA A factorizes (up to O(zf;)):

| ,, 81 w(tl) i

nl) o= (2
I k S0 2t1

s{  RRPQummss C i (8922
| Fgle (Qh qQ) ' E (_) ' ryg’zB
2 \ S0

ta | : 52

| IS g, (@1,42) — RRP production vertex,

—>—®—>—
B PR,PPRP, B v%, 4 — PPR-scattering vertex,

w(t) - Regge trajectory.
Two ways to obtain this asymptotics:
» BFKL-approach (Unitarity, renormalizability and gauge
invariance), see. [loffe, Fadin, Lipatov, 2010].

> Effective action approach [Lipatov, 1995; Lipatov, Vyazovsky,
2001].
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Structure of the EFT.

Light-cone derivatives:

0

ai = ni@u = 283;‘—:F

EFT Lagrangian [Lipatov, 1995]:

L Lkm"_z |: y1<y<y1+1 _’_L(yz<y<yi+l)

the separate copy of L%ic%gyi“) lives in each interval in rapidity

y; <y < y;+1. Different intervals interact via Reggeon exchanges
(RY = R4T.):
Lyin = 20, R 0" RY

kinematic constraints on Reggeon-fields (& QMRK):
6,R+ = 8+R7 =0=

R carries (ky,kr) and R_ carries (k—,kr).
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(Semi-)Infinite light-like Wilson lines

Particles highly separated in rapidity “perceive” each-other as
light-like Wilson lines.

x

—ige [ a1, 4l
% f dxlIAi(xi7x/$7xT)‘| = (1+ngai1Ai) ,

—00

W,z[Ar] = Pexp

x

:F
G [ dal Ay (v, 28, x7)

— 00

W;; [AL]= Pexp =P(1- igsaglAi)71 ,

Notation for ordered integrals:

T zf af_
1
o dxffl(xf)/dxffg(xg) / daf fo(xF) =03 f ... 0L f.
——_———

In the Feynman rules:
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Basic structure of Induced interactions.

Induced interactions of particles and Reggeons [Lipatov, 1995]:

L) o (Ry(@)0 W (A0

+ R_(2)204 W, [Ag%“<y<y2>D .

11/45



Basic structure of Induced interactions.

Induced interactions of particles and Reggeons:

Ly <v<v) 5 gitr [ d20-w [aA=r=)] 4 Rog2ow (Al ]

expansion of P-exponent generaties induced vertices:

Lr D tr[(R.OZA_+R_OZAL)+
(—ig)(O2R)A_DTTA ) + (—ig)*(O2R)A_0TTA 07 A ) +
(—ige) (2R )(AL 07 Ay) + (—ig,)* (2R )(A1 05 A+ 07 A )
+0(¢2)] .

but this structure is non-Hermitian: R — Hermitian, W — Unitary!
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Hermitian effective action and pole prescription

Recently the new derivation of effective action has been proposed
[Bondarenko, Zubkov, 2018] which fixes the Hermitian form of
Reggeon-gluon interaction:

fumﬁﬁ4WMJ—WWLmv

E.g. Rgg-vertex:

xr —

_;gs (92R% (2)) | A™ (2) / dey A% (21) | to [T [T0, T%]],

—o0

= Feynman rule:

fabiba
k]

1 1 1
2\ pabibs (, K1, K2 2 1, 2
o(— Mk S + = gs(—¢*)(n"' "
9s(=a")f (nZn )2 [kl_—i—is kl_—is] 9:(=q7)(n=n=)

i.e. the PV-prescription for the 1/k% poles for simplest induced
vertices [Hentschinski, 2013].
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Higher-order induced vertices

For higher-order induced vertices the i(0?R+ )0+ (W[Az] — WT[AZ])
interaction leads to the ie prescription proposed independently in
[Hentschinski, 2013] (based on argments from Regge theory):

» The induced vertex is written according to (92 Ry )0+ W [A]
interaction with 1/(k* + ic) prescription for all poles,

> The color structure tr (T*T% ... T"") is projected on subspace,
spanned by:

tr (T [[[T0, T%=] , T ] ,.. . T""]).

This pole prescription is very well tested: leads to the correct results
for 1-loop amplitudes with Reggeized gluons and quarks and corrct
2-loop gluon Regge trajectory [Chachamis, Hentschinski, Sabio-Vera,
2012-2013; ML.N., V.A.S., 2017].

The formalism is well-defined at all orders now!
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EFT for QMRK-processes with quark exchange.

EFT for Reggeized quarks [Lipatov, Vyazovsky, 2001]:

Lo=Q-id(Qs — W [AL]¥) + Q4+i0 (Q— — WT[A_]¢) + h.c,
where p = p,v*, QMRK kinematic constraints:

0+Q+ = 0+Q+ =0,
Q<+ =0, Qzat =0.=

Reggeized quark propagator (Pi = gny /4):

+ _p M 4+ _ i 5
_x.<_iF__Piq_2’ ——«—xiF— ?Pi
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Rapidity divergences and regularization.

Due to the presence of the 1/g*-factors in the induced vertices, loop
integrals in EFT contain the light-cone (Rapidity) divergences:

Dl : 2
dlq  (pg(nyn-))
2(1) — @ _ C 5a / T
b =14 —95A% [ omD @2(p— g)2qt g
|

The regularization by explicit cutoff in rapidity was proposed by

Lipatov |Lipatov, 1995 (¢* = /¢2 + qZe*¥):

[
Y1 q+2’

then
p2dP2qr
a4 (pr —qr)?

W) (p3)

E(? ~ 5abP2T X CAQ?/ X (y2 — y1) + finite terms
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Rapidity divergent one-loop integrals
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Covariant regularization.

The regularization and pole prescription was introduced in a series
of papers [Hentschinski, Sabio Vera, Chachamis et. al., 2012-2013],
also known in TMD factorization as “tilted Wilson lines” [Collins,
2011].

Regularization of the light-cone divergences is achieved by shifting n*
vectors from the light-cone:

At =nT+r-nT, EF=kT+r kT, r >0,

and for the lowest-order(Rgg, Qqg) induced vertices the PV
prescription is at work:

I[i]:~i:1<~l - )
k] 2 \kt+4ie kt—ic/’
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Regularization and gauge-invariance

Regularization should preserve the gauge-invariance of Reggeon-gluon
interactions:

dx da:_ =~ -
Shy = / d*xr / . {R 3+33W5c_[14+]}
AT dT_ 0 ~
2 + - 2157 _
/ Px / L [R ajaowz_[m]}

:/d2xT 7%{6‘? [ R-02Ws [4,]] —%tr[(E;JrR)@gWg_[A_,_]}}.

—0o0

First term — infinite Wilson line is gauge invariant (w.r.t. gauge
transformations trivial at oo) = new kinematic constraint:

OyR_=0_R, =0,

or pt =0 for R_ and p~ =0 for R,.
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Rapidity divergences in real corrections

New constraint allows to use same regularization for RDs in wvirtual
and real corrections. Lipatov’s vertex (k = q; + q2, k% = 0):

gt %
k_ ki
without modified constraint, the Slavnov-Taylor identity

is broken by terms O(r).

The square of regularized LV:

Iy, Ty PY = 16qT1qT2f( ),

dedd7) ) k7
)= (re=¥ 4 e¥)2(rev 4+ e=v)2’
+oo
N [ v ) = ~1- 1087+ 0)
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RDs in 1-loop, 1-Reggeon amplitude

pi:ij, p():O, d=4—2e.

j=1
- &y “Mixed” Feynman parametrization:
_<q_—|—kp1
q 4+ I / d’q
: ¢*(q+p1)?-.-(q+pn)?(7Fq)
—~ kn 1 - n+1
q+ Pn ~ /dal...dan+1/dx15 1—Zaj
+ {5 = 0 0 J=1

X

n+1 n+2
/ddq [xl(fﬁq) + aig+ pil)ﬂ

i=1
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RDs in 1- loop, 1-Reggeon amphtude

n+1
Q+z1 I~ fdal dan+1 fd!L‘l <1 — Z aj)
F~— ko i—1
q q+ D2 !
n—1 . e
: D+xy Y pfajatrat :
il kn j=1
q+Dpn
I n
+ { Pn = where D = —3 3 air1a;11(pi — pj)*-

3,j=0
Let’s put 7 = 0 = after integration over z:

1 —1

I~ /da1 danﬂ 5 ij Aj41 DinieJrl,

0

» Log-divergent for as [ %2, for n > 2 — finite.
0

» For n = 2, divergence can be removed by differentiating 91 /9k?

or OI/0k3.
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RDs in 1-loop, 2-Reggeon amplitude

ks “Mixed” Feynman parametrization:
|
_ {1 =0
q +€;1 I = /
 R2 + + Dn n-
i 2(g+p1)?. Oiq p)( 7)(n~q)
q ! n+1
:+ . ~ /da1 dan+1/dx1dx2 1-— ZCLJ
q+Pn 0 0
—_——— N n+l n+3
+ { o, =0 /dq[xl(n q) +z2(q) + > ailg+pi-1)?
=1
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RDskin 1-loop, 2-Reggeon amplitude

- fp =0
1 [e’e) n+1
_q‘i_%; I~ fdal . ..dan+1 f dﬂl‘ldl‘g 1) (1 — Z Clj)
q+p2 0 0 =1
q n —n—1—e¢
L D+ Z aji1 (xlﬁj + xgﬁj_) +x122+7(2? + 23)
q+pn =t
+ i P =0 For r = 0, after integration over xs:
1 0o —1 —n—e
Iw/dal...danﬂ/dxl Ol 2 +Z(L]+]pj D—FleajJrlp;r
0 0 j=1

» Log-divergence for (py =pf =0)as [ %.

0
» For n > 1 — no divergence if p; #0,...,p;, # 0 and
pf #0,...,pf | #0.
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“Tadpoles” and “Bubbles”.

“Tadpoles” (one quadratic propagator):

0y _ [dq] =)y _ [dq]
0= [ o 0= [
where [dPq] = (“2)€ddq, rp =T2%(1—e)'(1+€)/T(1 — 2e).

inD/2rp

“Bubbles” (two quadratic

ropagators): d
propagators) B([)+](p):/(12(p[575)]2[(m’

D
q = d
[+-] — [4q]
P—q p—ng By™(pr) = / *(p—q)*lq]g],
=7

where p™ = p~ = 0 for the last integral.
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“Triangle” integrals

One light-cone propagator:

k — (k+p)?=0

I q— 4+
|
pr Ti
|
|

Two light-cone propagators:

[}
_ RS Y
ql ‘
k2 =0
+ L,
:T Do s PT2

[+ _ [dPq]
Co ‘/q2<p—q>2<p+k—q>2[a+1'

-1 _ [42q]
G = / >(p1 — )% (p2 + 9)%[g][g ]
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Rapidity divergences at one loop
Only log-divergence ~ logr ( cells in the table) is related with
Reggeization of particles in ¢-channel.
Integrals which do not have log-divergence may still contain the
power-dependence on r:
» r~¢ = 0forr— 0ande<0.
» ¢ — oo for r — 0 and € < 0 — weak-power divergence (
cells in the table)
> ¢ — 0o — power divergence. (Red)

(# LC prop.) \ (# quadr. prop.) 1 2 3 4
1 B | o
[+-] [+-]
; Bj Cy

The weak-power and power-divergences cancel between Feynman
diagrams describing one region in rapidity, so only log-divergences are
left.
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Results for scalar integrals.

. % 1 2e¢ 2e¢
Notatlon:{%} =3 (k%w) —l—(ﬁ) .

» [+]-bubble in general kinematics (leading term of the
Mellin-Barnes representation):

1 re 1 W 2
Bif'p)= =——— =& o(r'/?
o () pt cos(me) 2¢2 {]5* } +O0),

» Tadpoles (direct integration):

-1
p?
AEH (p) = 3" BH]( ),

AT w) = B0 + 5B ()
{ } {ﬂ} 1 sin(re)T'(1 = 26)T%(1 + ¢)

s

28 /45



» [+—]-bubble in transverse kinematics p~ = p* = 0 (direct
integration):

)

_ 1 [\ im+ 2logr
ol e = 7 (57) =0
al T \PT

» [+—]-bubble in p~ = 0 kinematics (leading term of MB

expansion):

_ 1 2\ T2 + e)T(2 + €) sin(re)
B Npr,pt) = o <p—2> p—)
T T

2
X [iﬂ' + logr — log i—;; —YP(l+¢€) + w(l)} +0(r/?)
» [+—]-bubble in light-like kinematics p? = 0:

Helpn e o [dq (- (140 (2
By r.p _O)_/qz(q—p)Q[qﬂ[q*—p*] B pre? (I%) '
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Single-scale triangle.

Calculation of the single-scale triangle integral:

oiwh k) = | 2

@ —a?*p+k—q?q]
is significantly simplified by the new kinematic constraint p+ =

The final result is obtained using one-fold Mellin-Barnes
representation:

(k*)?

p%

2 €
L ey S
Cy = ol (P2T> - [—logr — 47 + log +Y(1+e)+y(1) —2¢(—e)|,

coincides with the result of [G. Chachamis, et. al., 2012].
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Triangle with two scales.

Q% kt k™ — (k+p)?=0
| q +
pr;p~ T
!
where now k? = ktk™ = —Q?%, X = Q?*/p3.

Apply “Rudimentary DE-method”. The integral:

(+) 2 26F it
0Cq = _Pri T3 +6) /dxldxgdxg z1(1+ 21 4 32)*
0X 0 T
r= 0

—3—¢€
X [pQTxl(%“Q + X) + kyas]

is finite and can be calculated analytically. The answer is:

I  2X ¢ 21X~
9X

€ e 1—-X "~

r=0

where I(X) = p2k, (5_%) [C(QH(X)_C([)H(X =0) .

31 /45



Triangle with two scales.

Q% ktik™ — (k+p)Z=0

_ | q— +
pr;p~ T
|

The final answer:

X
2X—¢ 2 [(1—29dz
10 = 2 '_Zu/'_ffizf_‘

0
2X ,
= ——g T 2[Lia(X) +log(l - X)log X] + O(e).
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Numerical cross-check

The results for Cé+) integrals with 1 and 2 scales has been
cross-checked numerically, using sector decomposition algorithm.
The r-dependence of the ratio (e = —0.01,
rel.acc.=1077): » For C(g+) with 2 scales: 3D
integral (cuhre algorithm of

[Ratio—1]
0001 Rel0 CUBA was used), 8 sectors, up
e to 4 subsectors in some of
10 P them.
C T . » For numerical comparison, the
‘‘‘‘‘‘ X=0.1

‘‘‘‘‘‘‘ 1/€2 pole is subtracted.

» The leading r-dependent term
10°¢ i is calculated using

=l Mellin-Barnes:
T 107 10 0.001 0.01'<]€3_ >€ r€X —2€ 1‘\2(1 _ 26)F(1 + 26)
Remaining r-dependence is O(r=%-%). P 2¢? I2(1—¢)
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Triangle with two light-cone propagators

Usual one-loop Feynman integrals with more than 4 propagators are
reducible to more simple integrals up to terms O(e).

[}
. 1 pr1; D7 We apply method of [Bern, Dixon, Kosower,

1992]. The O(e) remnant is proportional to
ql (d — 4)I'"*2) and integral I is finite.
k2 =0 The resilt in Euclidean region (p;” > 0, —p; >0,

— 2 .
* i1 Pr2; 2 P71 > 0):
_ -1)

L (D, PR, ) = —go )

o (PT1:PT2,P1 2) 2p2 P2, k2.

(P31 (PF2 — B + K3) | BU T 030,00) + (—p2)CL (01, oy )]
032 (P — Phe + K3) [BY(9ha —p7) + T O (9Fa, PR 1 )|
1 (01 + P —KH)BY 0 k2 = 0) ]

where ki = pi (—p3).

The log r-divergence cancels within square brackets, as
expected.
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Comparison with QCD
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Test process: DIS on the on-shell photon target

To perform the comaprison with QCD we consider the process:
7 () +~(P) = X,

where P has large P* momentum component and P? = 0. The LO
subprocess is:
77 (q) +7(P) = q(k1) + q(ka),

we introduce the usual variables:Q? = —¢?, zp = %, and work in
the (q, P) center of mass frame, where ¢+ = —xp P,
¢~ =Q*/(xP*), qr = 0.
We parametrize final-state momenta as:

kl =4q+q, k? :P_Q17

+ 2
q Q"+t
t) = —q>, 21 = P_1+ =zp o for xp < 1.

And will study the squared amplitude projected on the F» structure
function:
Fy(zp, Q% t1) in the limit 25 < 1.
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QCD at 1 loop.

Y u Y u u
u
u 8 u g
u
y u u % y u y u
Cl NI TI Cl N2 T2 Cl N3 T3 Cl N4 T4
i u “ Y u Y
'\/\/\,. '\’\/\,. u ) u
u 8 u 8 u
,\/\/‘A ,\/\/‘A 1 u
u
u u
Y u Y y u y
Cl N5 T5 Cl N6 T6 Cl1 N7 T7 Cl N8 T8
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QCD at 1 loop.

The QCD result (leading power in 25, but exact in Q2 and t):

QCD, 1—loop 2 — 2 2 2
FQQCD Born (wB7Q 7t1) = aSCF {7% + <2i _7_10g2u_2 _Blog u_2) +
Fym P (@, @2, 1) 4m € 3 Q Q

] 2 1 2 2
o (L 10g 2 Y iog g & 4o, (1- &
€ t1 B t1 t1

1 2 2 2 2 2
RGEETAE {Q (Q7 —t1) + (3t7 — 4Q7t1) log ?—1]}+o(x3),

2\—e€ 2
where @, = (&72)1,9: e~ €72 contains:
» The 1/¢? IR-divergence,
» Only single-log part in log ;L'fgl,

» The complicated dependence on Q?/t;.
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EFT diagrams for (Qyq vertex correction

flf_ pH ;é W %

The subtraction term (real part):

oTH = CE = &ZiFf‘g {(—2logr+1+36) (% +L1)] +O(e),

2
where L1 = log (‘t‘—l),

n
T4 = eequi(p + k) (w +ﬁ—+) nt,
is the Born Q~g-vertex.
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On-shell photon vertex @ NLO

The un-subtracted O(ay) correction to the Born Q-yg-vertex with the
on-shell photon is [M. A. Nefedov, V. A. Saleev (2017)] (real part):

po— QsCF [ 230 pu| 1 Lo L 2Lz _
ry = {tlAO—FFO{ = . + (—logr) 6+L1 + .

4T
1 12 2
—(=+ni+3)+2m -2+ T s
€ 2 2

where, Ly = log (%), and Al = ee, (p* — S nk) (ﬂ(p + k)ffﬁ"’)
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Origin of the subtraction term

The covariant regularization of 1/¢q™ pole corresponds to the

(smooth) cutoff at y; ~ —logr~?, and regularization for 1/¢~ pole

corresponds to the cutoff yo ~ logr~1.

N ;/ r\/\)'\"\
"\/'\T/

A
)2l Y2 y /\/\J"\
- "\./\/

41/45



Origin of the subtraction term

The covariant regularization of 1/¢q™ pole corresponds to the

(smooth) cutoff at y; ~ —logr~?, and regularization for 1/¢~ pole

corresponds to the cutoff yo ~ logr~1.

)Z] ;/ r\/\)'\"\
"\/'\T/

A
)2l Y2 y /\/\J"\
o "\./\/

12 y r-"@\
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Off-shell photon vertex @ NLO

We considered the Fy-projection of the v*(q) + Q(q1) — ¢ squared
amplitude at one loop. The ratio to Born amplitude is the
un-subtracted O(ay) correction factor:

_ 2
C‘(;)(Q27t17f) = asCr {_1 _ <1 + log IZ_) log 7
€ 1

47 €

2 2 2 2

T ’u 1 2Q . Q

— —2—log — -1 — + 2L 1- =
+<6 ogQ2>+2 og t1+ 12( t1)

1 2 2 2 4 Q2

G | @ -+ 0 20 L] L

where 7 = r - (P*2)?/Q?. To which we apply the same procedure
of localization in rapidity as in the on-shell case.

The result contains familiarly-looking Q?/t;-dependence, but no 1/¢?
pole!
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Comparison with QCD
The EFT result is given by

o T
PR
A
and it (almost!) reproduces the QCD-result:

FQQCD, 17]00p($3, QQatl) _ FQEFT, lfloop(xB’ QQatl) _
FQQCD’ Born(x37 Q27 tl)

asCr [1 [ 12\°

What could this be? Hints:

» In the calculation of massive quark impact factor [M. Ciafaloni,
G. Rodrigo, 2000] it was found that procedure of “localization in
rapidity” should be modified because of the additional scale m,.
This leads to the terms ~ 1/¢2!

» Should real and virtual corrections reproduce QCD separately?
> What is so in (s/s0)“" ? Could logsg ~ 1/e ?
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Conclusions

» The consistent procedure of rapidity regularization is proposed.
One should modify not only Wilson lines, but also kinematic
constraints.

» One-loop integrals with log-RDs are identified. The power-RDs
seem to be contained just in a few simplest integrals.

» Triangle integrals with 1 and 2 scales are calculated.

» Reduction of one-loop integrals with more than four propagators
(quadratic or light-cone) seems to work similar to the case of
ordinary loop integrals.

» Comparison with QCD for the DIS on a photon target is a
nontrivial test of the formalism. The (Q?)~¢/e?-remnant is found.

» Procedure of localization in rapidity should be modified for
multiscale quantities?

Thank you for your attention!
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Backup: Infra-red structure of real
corrections
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Real NLO correction to the off-shell photon vertex

To study real corrections to the v*Q-vertex, let’s rewrite the structure
function in kp-factorized form:

1
dx _ A
FQ(xB’QQ):/x—Ql/dD 2qu (I)Q/’Y(xlatlap‘Q)'FQ(xlaQQatlap‘Q)a
1
0

A
where ®,,, is the unintegrated PDF, which is just <«J<—> -vertex at

LO. The real NLO corrections to F» are given by the subprocess:

(@) + Qar) — q(k1) + g(k2).
Or v - 4 &

\\ q ““Q“—» q
v
q
Y
Y
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Collinear and soft limits
Diagram for

Convenient parametrization of momenta (z = xp/z1): the soft limit:
k;r = qf(l - 2)z, k; = q;r(l —2z)(1—x),
kr1 =zqr1 + A, ke = (1 —z)qr1 — A,

where 0 < x < 1. The invariant
§= (k1 + k2)? = A%/2(1 — z).

Two limits:
> Final-state collinear limit (JA| < min(lkr1], [kra)):

4Q%*Cxp Cpg? [1+ 22 e x)}

z 3 1—x
> “Soft” limit (k3, < Q?, no r-regularization):

facoll.
F5o% =

863;33 Crg?
2’
=2 y2[y —nyT—q]

where y = ko (Qzl;zz(l - ac))fl/2 and n is the direction of qr;.
48 / 45

fisoft.
F3o% =




“Soft” kinematic region
1—-2

Definition: k%g < 5%622

,5T<<1=>

52
y2 < T

1—2a

Soft integral with r-regularization
22
(b = = tesrre > )

1

- P2y 6 (63(1 —2)~" —y?)
Lsort / 1_33 /y+,,‘p1(1_x))[y—n\/m]2

using the representation for f-function in terms of Mellin integral
O(a—b) = hm f =

)

Z_m (%)Z. The result is:

oo = B () — w1 = ) + logrp )] + O3
soft = o € ¢) +log(rp™")] + O(67).
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Localization in rapidity

To localize the soft correction in rapidity one have to subtract
(r-regularization included):

s soft Seng Crg;
AR = Mz —1 ,
47 k= L—z [(1=2)+7rpyY][y? +rp~t(1 - )]
! Integral over the soft region:
! kQ —
i 67) ¢
i AR = O piog ]+ 03},

contains only 1/e.

The expected cancellation (logr — 2logr) happens:

MRK 1 1 2
Tsofs — Algopy = 2% 2 log (rpd7) + ...\

but 1/€* pole is left.



	

